首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the rheological behavior of concentrated cement suspensions in the absence and presence of comb polymers comprised of a polyacrylic acid (PAA) backbone and charge-neutral, poly(ethylene oxide) (PEO) teeth. These species possessed a uniform backbone molecular weight and graft density, with varying teeth molecular weight. Both PAA, a linear polyelectrolyte, and PAA/PEO comb polymers imparted initial stability to concentrated cement suspensions above a critical weight fraction, w * of 4 mg/(g of cement). Cement–PAA suspensions, however, set prematurely. Their rapid, irreversible stiffening stemmed from deleterious interactions between PAA and multivalent counterions in solution. Interestingly, the presence of PEO teeth comprised of only a few monomer units in length mitigated such interactions. The rheological property evolution of concentrated cement–PAA/PEO suspensions exhibited complex behavior ranging from the reversible gel-like response observed at short teeth lengths to a remarkable gel-to-fluid transition observed during the deceleratory period for systems comprised of longer PEO teeth. At longer hydration times, all cement–PAA/PEO suspensions exhibited initial elastic modulus values, Gi '∼ exp( t /τc) before the onset of the acceleratory period, followed by initial set. Their characteristic hydration time, τc, and set time depended strongly on the concentration of "free" carboxylic acid groups [COO] arising from non-adsorbed polyelectrolyte species in solution.  相似文献   

2.
We have studied the rheological property evolution and hydration behavior of white and ordinary portland cement (type I) pastes and concentrated cement–polyelectrolyte suspensions. Cement composition had a marked effect on the elastic property evolution ( G '( t )) and hydration behavior of these suspensions in the presence of poly(acrylic acid)/poly(ethylene oxide) copolymer (PAA/PEO), even though their affinity to adsorb such species was nearly identical. Both white and ordinary portland cement pastes exhibited G '0 values of ∼104 Pa and fully reversible G '( t ) behavior until the onset of the acceleratory period ( t = 2 h), where the pastes stiffened irreversibly. In contrast, cement–PAA/PEO suspensions exhibited G '0 values of ∼1 Pa and G '( t ) behavior comprised of both reversible and irreversible features. Interestingly, ordinary portland cement–PAA/PEO suspensions experienced a gel-to-fluid transition on high shear mixing at short hydration times (<1 h), and the particle network did not rebuild until ∼24 h of hydration. In sharp contrast, white portland cement–PAA/PEO suspensions remained weakly gelled throughout the initial stage of hydration even after high shear mixing. At longer hydration times (>1 h), both cement–PAA/PEO suspensions exhibited G ' i ( t ) ∼ exp( t /τc) with τc values of 5.6 and 1.3 h for ordinary and white portland cement, respectively. Our observations suggest that hydration phenomena impact interparticle forces during early stage hydration and, ultimately, lead to initial setting through the formation of solid bridges at the contact points between particles within the gelled network.  相似文献   

3.
Polyelectrolyte species, known as superplasticizers, dramatically affect the rheological properties of dense cement suspensions. We have studied the influence of sulfonated naphthalene formaldehyde condensate (SNF) and carboxylated acrylic ester (CAE) grafted copolymers of varying molecular architecture on the surface (e.g., adsorption behavior and zeta potential) and rheological properties of concentrated cement suspensions of white portland cement and two model compounds, β-Ca2SiO4 and γ-Ca2SiO4. The adsorption of SNF species was strongly dependent on cement chemistry, whereas CAE species exhibited little sensitivity. The respective critical concentrations (Φ*) in suspension required to promote the transition from strongly shear thinning to Newtonian flow (flocculated → stable) behavior were determined from stress viscometry and yield stress measurements. Theoretical analysis of interparticle interactions suggested that only colloidal particles in the size range of ≤1 μm are fully stabilized by adsorbed polyelectrolyte species. Our observations provide guidelines for tailoring the molecular architecture and functionality of superplasticizers for optimal performance.  相似文献   

4.
Electrostatically stabilized alumina suspensions can be destabilized by the enzyme-catalyzed decomposition of urea (direct coagulation casting). Depending on the conditions, this reaction can shift the pH of a suspension to the buffer pH of the reaction products or increase the ionic strength at the buffer pH. The coagulation for both mechanisms was investigated using in situ rheological measurements. Using a vane tool in oscillation mode, the measuring conditions were optimized to find a reasonable method for time-dependent measurements. Constant parameters (stress or strain) proved to be unsuitable, because the linear viscoelastic region shifted considerably during the coagulation. Furthermore, the gel structure produced on coagulation via increase of ionic strength (Δ I ) was very sensitive to the oscillation. Therefore, for long-time experiments, a short continuous measurement with a low strain was followed by amplitude sweeps with increased intervals to determine the linear values of G ' and G ". In this way, the increase of the moduli G ' and G " could be followed for longer times, and it was possible to demonstrate two results. First, the final G ' of the network was about 10 times higher for Δ I -coagulated material than for suspensions coagulated via pH shift (ΔpH). Second, particle rearrangement processes took place in Δ I -coagulated networks even after the chemical changes were finished, whereas ΔpH-coagulated samples were "frozen-in" when approaching the isoelectric point and showed no further physical changes afterward.  相似文献   

5.
We have studied the gelation, consolidation, and rheological properties of boehmite-coated SiC suspensions. A boehmite-coated SiC suspension consists of SiC particles covered with a boehmite layer of a few nanometers in thickness in the suspension. Similar to boehmite suspensions, the boehmite-coated SiC suspension can gel over time. The gelation, as well as the rheological behavior of the boehmite-coated SiC suspension with respect to pH, is shown to be similar to that of a boehmite suspension. However, because of the particle-size difference, a boehmite-coated SiC suspension gels more slowly than suspensions of smaller boehmite particles. The boehmite coating improves the consolidation density of SiC, increasing the sediment density from 39 to 52 vol% and the centrifuged density from 50 to 60 vol%. It, also, makes the consolidation behavior of a boehmite-coated SiC suspension with respect to pH more consistent with the rheological behavior; i.e., lower suspension viscosity and storage modulus correlate with a higher consolidated density. In contrast, suspensions containing SiC particles partially covered with boehmite and individual boehmite particles in the suspensions show no improvement in the sediment density and no systematic correlation between the consolidation density and the rheological properties. This indicates that the complete coating of boehmite on the SiC particles is critical to the improvement in consolidation density.  相似文献   

6.
The ionic stability of alumina particles in moderately concentrated ethanol suspensions is studied. Surface chemistry and interparticle forces are manipulated by controlling the acidity of the suspensions without dispersants. The acidity of ethanol solution is determined using ion transfer functions, wherein the relationships between acidity, alumina particle surface charge, zeta-potential, stability, and suspension rheological behavior are established. Positive isoelectric point (IEP) shift is observed for alumina in ethanol on increasing the solids concentration. However, dilute and concentrated aqueous suspensions of alumina give the same IEP. The viscosity and flow curves for alumina/ethanol suspensions are acidity dependent. The flow curves of the suspensions follow the Casson model, and the Casson yield value is used to evaluate suspension stability.  相似文献   

7.
We examined the effect of the boehmite coating thickness on the rheology and consolidation of boehmite-coated SiC suspensions. The thickness of the boehmite coating on SiC was varied by adjusting the boehmite concentration relative to SiC. For boehmite concentrations less than 10 wt%, the coating thickness increased with increasing boehmite concentration. For boehmite concentrations higher than 10 wt%, the coating thickness saturated. Further increase in the boehmite concentration led to the presence of small boehmite particles in the suspensions. All boehmite-coated suspensions gelled near their isoelectric points and the storage moduli of the gels with respect to pH exhibited a maximum near the isoelectric points. Below 10 wt% boehmite, the suspensions had very few small boehmite particles. The maximum storage modulus, G '0,max, of the boehmite-coated SiC gel decreased with increasing coating thickness, t , as G '0,max∝ t −2, in good agreement with our earlier theoretical prediction. Meanwhile, the maximum sedimentation densities, φmax, of the coated suspensions occurred at around pH ∼ 4.0 and increased with increasing coating thickness from under φmax= 25 vol% with 1 wt% boehmite to above φmax= 65 vol% with 10 wt% boehmite due to increased zeta potential with increasing coating thickness. Above 10 wt% boehmite, the excess boehmite particles in the suspension increased the maximum suspension storage modulus, G '0,max, and decreased the maximum sedimentation density, φmax.  相似文献   

8.
The rheological properties of nonaqueous silicon nitride suspensions are studied. Suspensions were prepared to volume fractions of solids of 0.21, 0.25, 0.29, and 0.33, and dispersed with phosphate ester in a mixture of solvents (methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone). Expanded viscosity curves were obtained by measuring under controlled rate and stress conditions, and the experimental data were fitted to the Cross model that provides the high shear limiting viscosity (η). The evolution of viscosity with volume fraction of solids was fitted to the Krieger-Dougherty equation, to predict the maximum packing fraction (φm). The electrostatic pair potential was calculated based on the DLVO theory by evaluating the dielectric constant of the three-component solvent and the Hamaker constant of the Si3N4–solvent system. The surface potential was calculated by measuring the elastic modulus through dynamic rheological measurements. The steric potential was also evaluated from the available models. It has been observed that phosphate ester provides a purely steric stabilization at short separation distances (up to 9 nm), while electrostatic forces dominate at larger separation distances.  相似文献   

9.
10.
Effect of Aging on Rheological Properties of Lime Putty   总被引:2,自引:0,他引:2  
The increasingly wider application of lime-based materials for the conservation and restoration of historical buildings has led to a revival of interest in lime putty. One of the most well-known and highly regarded properties of lime putty is its plasticity/workability.
This paper describes the results of a rheological investigation conducted on putties having identical water content but aged for different times, with the aim of providing an objective and quantitative evaluation of plasticity. Rheological measurements have demonstrated that, all other conditions being equal, shear stress increases with aging. We propose here to consider some parameters derived from Tattersall and Bingham models that can be used as a quantitative measure of plasticity directly correlated with aging.  相似文献   

11.
Dense nearly single-phase β'-SiAlON materials (with substitutional level z ∼ 1) have been prepared by hot isostatic pressing and their high-temperature deformation behavior has been investigated using low-frequency damping and torsional creep experiments. Addition of a small fraction of AlN (∼0.5 wt%) to the starting (nominally z = 1) SiAlON powder enabled us to "balance" the excess SiO2 which likely arises from surface contamination of the starting SiAlON powder upon exposure to atmosphere. As a result, a fine-grained β'-SiAlON polycrystal free of residual (glassy) X-phase segregated to grain boundaries could be prepared. This microstructure is in contrast with that found for an "unbalanced" composition prepared from the same raw β'-SiAlON powder but without the corrective AlN addition. In this latter case, residual glass (X-phase), consisting of Al-rich SiO2, was entrapped at multiple grain junctions. The presence of such a low-melting intergranular glass dominates the high-temperature deformation behavior of the dilute SiAlON material, involving marked degradation of creep resistance and significant damping relaxation due to grain-boundary sliding. "Balancing" the SiAlON microstructure with a small addition of AlN enabled us to suppress anelastic relaxation by grain-boundary sliding and to increase the creep resistance of the material by more than 1 order of magnitude.  相似文献   

12.
The rheological, structural, and stress evolution of aqueous alumina (Al2O3):latex tape-cast layers of varying composition were studied by shear rheology, direct visualization, and a controlled environment stress measurement device. Their low shear viscosity was nearly independent of the alumina:latex ratio for binary mixtures whose particle size ratio (λ=̄aluminalatex) approached unity, but varied over an order of magnitude for systems with particle size asymmetry. Direct visualization of these mixtures revealed that particle flocculation occurred as their total solids loading increased. Their structure was characterized at intermittent points during the drying process by imaging freeze-dried samples using scanning electron microscopy (SEM). Their corresponding stress histories exhibited three distinct regions: an initial period of stress rise, followed by a stress maximum, and, finally, a period of stress decay. Pure alumina layers exhibited a maximum stress of ∼1 MPa and a residual stress below 0.01 MPa. Pure latex films exhibited a maximum stress of ∼0.1 MPa and only a slight stress decay. The ceramic phase dominated the initial period of stress rise, while the latex phase strongly influenced the residual stress of composite layers cast from alumina:latex suspensions. Their maximum drying stress increased with decreasing Al2O3 particle size, whereas their residual stress increased with increasing latex T g.  相似文献   

13.
Additive manufacturing of near‐net‐shaped dense ceramic components has been established via room‐temperature direct writing of highly loaded aqueous alumina suspensions in a layer‐by‐layer fashion. The effect of alumina solid loading on rheology, specimen uniformity, density, microstructure, and mechanical properties was studied. All suspensions contained a polymer binder (~5 vol.%), dispersant, and 51–58 vol.% alumina powder. Rheological measurements indicated all suspensions to be yield‐pseuodoplastic, and both yield stress and viscosity were found to increase with increasing alumina solid loading. Shear rates ranging from 19.5 to 24.2/s, corresponding to viscosities of 9.8 to 17.2 Pa·s, for the 53–56 vol.% alumina suspensions were found to produce the best results for the 1.25‐mm tip employed during writing. All parts were sintered to >98% of true density, with grain sizes ranging from 3.2 to 3.7 μm. The average flexure strength, which ranged from 134 to 157 MPa, was not influenced by the alumina solid loading.  相似文献   

14.
2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) was evaluated as a dispersant for nanosized 3-mol%-Y2O3-stabilized tetragonal-ZrO2 polycrystal (3Y-TZP) suspensions. The adsorption of PBTCA was characterized using the decolorization method of ferric 5-nitrosalicylate complexes. Maximum adsorption of the dispersant on the 3Y-TZP powder was found to occur at pH 3.0. At pH >3.0, the adsorbed amount decreased with increased pH. Semiquantitative analysis using auger electron spectroscopy showed that PBTCA adsorbed irreversibly on the powder. The surface charge of the powder was evaluated by measuring the zeta-potential in dilute powder suspensions. The suspension was most effectively stabilized at high pH by the high charge induced by the adsorption of PBTCA. Rheological properties of the suspension were evaluated as a function of dispersant amount and solids loading. The optimum amount of dispersant increased with increased solids loading for solids loading >20 vol%. A stable suspension of 35 nm 3Y-TZP particles with a solids loading as high as 32 vol% was obtained using PBTCA as dispersant, in contrast to 28 vol% when using ammonium polyacrylate (NH4PAA). Theoretical calculations of the interaction between 3Y-TZP particles showed that the stabilization of the suspensions was attributed to a combination of the electrostatic repulsion and a steric barrier caused by the adsorbed PBTCA. Induced coupling plasma analysis showed that PBTCA could be completely burned out during sintering, which confirmed its suitability as a dispersant for 3Y-TZP.  相似文献   

15.
Previous works have shown that carrageenan can be successfully used in the aqueous gelforming of powders, because carrageenan forms a firm gel, similar to that formed by agarose, but at a much lower cost. In this work, the synergistic effect of carrageenan with locust bean gum is studied. The rheological behavior of 2 wt% solutions of these polysaccharides and their mixtures are measured under mixing conditions (60°C) and by recording the viscosity and elastic modulus on cooling. The effect of the addition of these solutions to 50 vol% alumina slurries up to a concentration of 0.5 wt% is studied. Although gelling time increases, the resulting gels are stronger than for carrageenan alone. Gelcast alumina bodies with green and sintered densities of 57% and 97.6% of theoretical have been obtained.  相似文献   

16.
Geopolymer (GP) composites show great potential as a replacement for ordinary Portland cement (OPC) in construction material, extrusion-based, and additive manufacturing. The rheological properties of highly viscous and reinforced systems have not yet been well studied, due to limitations in the current state of the art rheometers and viscometers, such as size and torque limits. In this study, the basic rheological properties of highly reinforced, geopolymer composites with potential for 3D printing are innovatively investigated with “squeeze flow” and “flow table” tests commonly used in civil engineering. Squeeze-flow rates of 0.1, 1.0, and 3.0 mm/s were assessed with varying sand weight percentages or basalt fiber lengths and compared to a conventional OPC mixture to differentiate the flow properties and deformation resistance of both materials. It is shown that the deformation resistance as a result of jamming increases with increasing solid reinforcement percentages, but that the overall effect of fiber size is somewhat inconclusive. In addition, the effect of squeeze-flow rate exhibits an increase in load required to initiate flow at lower squeezing rates, but, upon reaching a certain ratio of solids to liquid in the matrix, the results become variable.  相似文献   

17.
18.
The rheological properties of nonaqueous silicon nitride powder suspensions have been investigated using steady shear and viscoelastic measurements. The polymeric dispersant, Hypermer KD-3, adsorbed strongly on the powder surfaces, and colloidally stable, fluid suspensions up to a volume fraction of φ= 0.50 could be prepared. The concentrated suspensions all displayed a shear thinning behavior which could be modeled using the high shear form of the Cross equation. The viscoelastic response at high concentrations was dominated by particle interactions, probably due to interpenetration of the adsorbed polymer layers, and a thickness of the adsorbed Hypermer KD-3 layer, Δ∼10 nm, was estimated. The volume fraction dependences of the high shear viscosity of three different silicon nitride powders were compared and the differences, analyzed by using a modified Krieger-Dougherty model, were related to effective volume effects and the physical characteristics of the powders. The significantly lower maximum volume fraction, φm= 0.47, of the SN E-10 powder was referred to the narrow particle size distribution and the possibility of an unfavorable particle morphology.  相似文献   

19.
Dissolution of BaCO3 and its effect on the dispersion behavior of aqueous BaCO3 suspensions at various pH values have been investigated. The amount of leached Ba2+ decreases with increasing pH value, which agrees with thermodynamically calculated results. The dissolution of BaCO3 also causes an increase in pH value of the suspension, but the change decreases with increasing initial pH value. The isoelectric point (IEP) of leached BaCO3 powder is at a pH of ∼10–10.5 and remains unchanged with increasing solids loading. The IEP of BaCO3 shows no significant change with added KCl or K2CO3, but shifts to a higher pH with increasing concentration of added BaCl2.  相似文献   

20.
超细AP/HTPB悬浮液的流变特性   总被引:1,自引:2,他引:1  
魏青  李葆萱 《火炸药学报》2003,26(2):43-46,57
在改进NDJ-4型旋转粘度仪的基础上。对切应力τ、切变速率γ及剪切速度指数n等流变学参数进行了估算。从填充分数、工艺助剂等方面对含硼富燃固体推进剂用超细AP/HTPB悬浮液流变特性进行了实验研究。结果表明.AP颗粒间通过粘合剂体系形成相互作用是悬浮液呈假塑性流动的主要原因.表面活性助剂(SH)可明显改善超细粒AP的表面性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号