共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
基于统计特征和小波分解方法的人脸识别研究 总被引:1,自引:0,他引:1
计算机的自动人脸识别是当今研究的热点和难点,并且在安全系统和商贸系统等领域有着广泛的应用。论文介绍了用于人脸识别的基于统计特征的方法和基于小波分解的方法,并对每种识别方法进行分析与比较,总结了影响人脸识别技术应用的关键因素。 相似文献
3.
Contourlet变换是一种新的多尺度几何分析方法,它不仅具有小波变换的多分辨率特性和时频局域特性,还具有很强的方向性和各向异性.提出基于Contourlet变换和核Fisher判别分析的人脸识别方法,研究了Contourlet变换的低频系数、各层高频系数与核Fisher判别分析相结合进行人脸识别的识别率和识别时间.实验表明,Contourlet变换的低频系数与核Fisher判别分析相结合,有优异的识别率,也减少了识别时间;高频成分有一定的识别性能,但识别率较低.将低频成分与高频方向子带相结合能获得最优的识别率. 相似文献
4.
目的 针对2维线性鉴别分析提取人脸特征向量稳定性较差、仅对行或列方向提取特征时容易丢失不同行或列间有助于鉴别分析的协方差信息、同时存在特征维数较高的问题,提出一种广义并行2维复判别分析的人脸识别方法。方法 首先对人脸图像进行广义并行2维线性判别分析处理,根据特征值贡献率动态选取特征向量组成正交投影矩阵,完成水平和垂直方向上的投影;其次将处理后得到的两类特征矩阵以复数的实部和虚部形式相加,对融合后的特征矩阵进行广义2维复判别分析处理得到复特征矩阵;然后以复特征矩阵的特征值大小来衡量特征矩阵分量的识别性能,对特征矩阵分量进行重新排序,选取最具鉴别力的分量形成最终表征人脸的特征;最后采用最大相似度分类器比较测试样本与训练样本特征的相似度,进行人脸图像特征的分类识别。结果 在Yale、ORL、FERET、CMU-PIE及LFW人脸数据库上进行实验测试,该方法的最优识别率分别为100%、100%、98.98%、99.76%及98.67%,特征维数在8590之间,表明该方法对复杂条件下的人脸识别有较高的准确率和较低的空间占有率。结论 该方法能够有效克服2维线性鉴别分析提取特征稳定性差、特征空间中特征重叠、存储系数多、特征维数高的缺点,表现出较高鲁棒性和准确率及较低空间复杂度的特性。 相似文献
5.
本文提出了一种基于广义Fisher鉴别分析的人脸识别新方法。在ORL标准人脸库上的试验结果证实了所提出方法的有效性和稳定性。 相似文献
6.
提出了一种将小波变换和Fisher判别分析相结合的人脸识别方法.该方法先对经过预处理的标准脸像进行二级小波分解,并将第一级低频子带系数与第二级低频子带的积分投影结果一并作为该图像的一次特征;然后再对其进行Fisher判别分析得到一个低维的特征矢量,同时判别能力得到了有效增强,判别分析中采用了一种"同步对角化类间、类内散布矩阵"的策略,避免了传统FDA求解方法受类内散布矩阵Swth出现奇异的困扰.在YALE和ⅡS两个人脸数据库上进行验证,采用了简单的最近邻分类器,结果表明该方法产生的识别性能优于传统的Eigenfaces和Fisherfaces方法. 相似文献
7.
提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零空间核判别分析算法(null-space kernel discriminant analysis,NKDA)并将其应用于人脸识别.利用核函数将原始样本隐式地映射到高维特征空间后,采用一次瘦QR分解求核类内散布矩阵的零空间鉴别矢量集,最后再进行一次Cholesky分解求得具正交性的核空间鉴别矢量集.与NLDA相比,NKDA具有更好的识别性能且在大样本情况下也能应用.另外,基于NKDA,提出了增量NKDA算法,当增加新的训练样本时能正确地更新NKDA鉴别矢量集.在ORL库、Yale库和PIE子库上的实验结果表明了算法的有效性和效率,在有效降维的同时能进一步提高鉴别能力. 相似文献
8.
《计算机科学与探索》2017,(1):124-133
特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularization,L21GKDA)。利用核函数将原始样本隐式地映射到高维特征空间中,得到广义核Fisher鉴别准则,再利用一种有效变换将该非线性模型转化为线性回归模型;为了能使特征选取和子空间学习同时进行,在模型中加入了一种L_(2,1)范数惩罚项,并给出该正则化方法的求解算法。因为方法借助于L_(2,1)范数惩罚项的特征选取能力,所以它能有效地提高识别率。在ORL、AR和PIE人脸库上的实验结果表明,新算法能有效选取人脸的非线性特征,提高判别能力。 相似文献
9.
张量局部Fisher判别分析的人脸识别 总被引:3,自引:0,他引:3
子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点, 本文提出了一种新的张量局部Fisher判别分析(Tensor local Fisher discriminant analysis, TLFDA)子空间降维技术. 首先,通过对局部Fisher判别技术进行分析,调整了其类间散度目标泛函, 使算法的识别性能更高且时间复杂度更低;其次,引入张量型降维技术对输入数据进行双边投影变换而非单边投影, 获得了更高的数据压缩率;最后,采用迭代更新的方法计算最优的变换矩阵.通过ORL和PIE两个人脸库验证了所提算法的有效性. 相似文献
10.
改进的线性判别分析及人脸识别 总被引:1,自引:0,他引:1
为有效解决传统LDA(线性鉴别分析)的小样本规模问题,提出一种改进的LDA算法。首先对样本进行无损降维;然后在Fisher准则基础上,用散度矩阵差代替散度矩阵的比值,避免对类内矩阵求逆的同时也降低了计算复杂度,实现有效的特征抽取;最后实现对人脸的识别。实验结果表明,该算法是有效的,优于传统LDA方法。 相似文献
11.
12.
基于部件的级联线性判别分析人脸识别 总被引:1,自引:0,他引:1
文章提出一种基于人脸部件表示的级联线性判别分析人脸识别方法。该方法将人脸图像划分为具有交叠区域的多个部件,对每个部件应用线性判别分析以寻找该部件的判别方向,然后对所有部件应用线性判别分析以寻找总体最优判别方向。以从该级联线性判别分析提取的特征作为人脸描述。在FERET人脸库上的人脸识别和人脸确认的实验结果表明,该方法优于传统的基于全局图像的Fisherface方法。 相似文献
13.
广义主分量分析及人脸识别 总被引:2,自引:0,他引:2
传统的主分量分析和Fisher线性鉴别分析在处理图像识别问题时都是基于图像向量的。该文提出了一种直接基于图像矩阵的主分量分析方法,它的突出优点是大大加快了特征抽取的速度。在ORL标准人脸库上的试验结果表明,该文所提出的方法不仅在识别性能上优于传统的主分量分析方法和Fisher线性鉴别分析方法,而且特征抽取的速度得到了很大的提高。 相似文献
14.
为了克服加权线性判别分析(WLDA)只利用有标签的训练样本而不能反映样本数据流形结构的缺点,提出一种正则化的半监督判别分析方法。首先构建所有样本的近邻图来估计数据的局部流形结构,然后将此作为正则项引入WLDA的准则函数中。该方法避免了类内散度矩阵奇异,同时保持了样本数据的判别结构和几何结构。在ORL和YALE人脸数据库上的实验结果证明了该算法的有效性。 相似文献
15.
16.
尽管基于Fisher准则的线性鉴别分析被公认为特征抽取的有效方法之一,并被成功地用于人脸识别,但是由于光照变化、人脸表情和姿势变化,实际上的人脸图像分布是十分复杂的,因此,抽取非线性鉴别特征显得十分必要。为了能利用非线性鉴别特征进行人脸识别,提出了一种基于核的子空间鉴别分析方法。该方法首先利用核函数技术将原始样本隐式地映射到高维(甚至无穷维)特征空间;然后在高维特征空间里,利用再生核理论来建立基于广义Fisher准则的两个等价模型;最后利用正交补空间方法求得最优鉴别矢量来进行人脸识别。在ORL和NUST603两个人脸数据库上,对该方法进行了鉴别性能实验,得到了识别率分别为94%和99.58%的实验结果,这表明该方法与核组合方法的识别结果相当,且明显优于KPCA和Kernel fisherfaces方法的识别结果。 相似文献
17.
基于核化图嵌入的最佳鉴别分析与人脸识别 总被引:5,自引:0,他引:5
将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE)框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间鉴别信息的组合方法.任何一种可以用核化图嵌入框架描述的核算法,都可以有相应的组合方法.在ORL,Yale,FERET和PIE人脸数据库上验证了所提出的理论和方法的有效性. 相似文献