首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低占空比、低碰撞的异步无线传感器网络MAC协议   总被引:1,自引:0,他引:1  
提高信道监听质量是降低能量消耗和提高通信效率的有效方法。提出了一种低占空比、低碰撞的PB-MAC(predict-base MAC)协议。通过发送节点精确预测接收节点的唤醒时间,降低占空比;采用基于预测的重建连接机制和数据重传机制,有效地避免碰撞和实现高效重传。OMNet++仿真实验结果表明:在50节点随机网络中,PB-MAC的平均占空比、发送消息耗能和平均碰撞次数分别比RI-MAC少68.60%、24.75%、68.05%,比X-MAC少64.39%、64.05%、70.54%。同时,在网格网络中PB-MAC的性能也优于RI-MAC和X-MAC。  相似文献   

2.
Being a pivotal resource, conservation of energy has been considered as the most striking issue in the wireless sensor network research. Several works have been performed in the last years to devise duty cycle based MAC protocols which optimize energy conservation emphasizing low traffic load scenario. In contrast, considering the high traffic situation, another research trend has been continuing to optimize both energy efficiency and channel utilization employing rate and congestion control at the MAC layer. In this paper, we propose A Load-aware Energy-efficient and Throughput-maximized Asynchronous Duty Cycle MAC (LET-MAC) protocol for wireless sensor networks to provide an integrated solution at the MAC layer considering both the low-and high-traffic scenario. Through extensive simulation using ns-2, we have evaluated the performance of LET-MAC. LET-MAC achieves significant energy conservation during low traffic load (i.e., no event), compared to the prior asynchronous protocol, RI-MAC, as well as attains optimal throughput through maximizing the channel utilization and maintains lower delay in regard to the CSMA/CA-like protocol during a high volume of traffic (i.e., when an event occurs).  相似文献   

3.
This paper presents an asynchronous cascading wake-up MAC protocol for heterogeneous traffic gathering in low-power wireless sensor networks. It jointly considers energy/delay optimization and switches between two modes, according to the traffic type and delay requirements. The first mode is high duty cycle, where energy is traded-off for a reduced latency in presence of realtime traffic (RT). The second mode is low duty cycle, which is used for non-realtime traffic and gives more priority to energy saving. The proposed protocol, DuoMAC, has many features. First, it quietly adjusts the wake-up of a node according to (1) its parent’s wake-up time and, (2) its estimated load. Second, it incorporates a service differentiation through an improved contention window adaptation to meet delay requirements. A comprehensive analysis is provided in the paper to investigate the effectiveness of the proposed protocol in comparison with some state-of-the-art energy-delay efficient duty-cycled MAC protocols, namely DMAC, LL-MAC, and Diff-MAC. The network lifetime and the maximum end-to-end packet latency are adequately modeled, and numerically analyzed. The results show that LL-MAC has the best performance in terms of energy saving, while DuoMAC outperforms all the protocols in terms of delay reduction. To balance the delay/energy objectives, a runtime parameter adaptation mechanism has been integrated to DuoMAC. The mechanism relies on a constrained optimization problem with energy minimization in the objective function, constrained by the delay required for RT. The proposed protocol has been implemented on real motes using MicaZ and TinyOS. Experimental results show that the protocol clearly outperforms LL-MAC in terms of latency reduction, and more importantly, that the runtime parameter adaptation provides additional reduction of the latency while further decreasing the energy cost.  相似文献   

4.
Typically, asynchronous MAC protocols are used to monitor a significant facility for rare events or to detect an intrusion in wireless sensor networks. Moreover, asynchronous MAC protocols can achieve high energy efficiency due to the fact that there is no periodic control frame. However, asynchronous MAC protocols have the problem of long end-to-end delay time caused by the absence of precedent time synchronization per link. This paper proposes a new scheme, called virtual tunnel (VT), which can reduce the delivery delay of asynchronous MAC protocols in multi-hop environment. The VT scheme can achieve approximated duty cycle synchronization with on-demand approach. In this scheme, through the estimation of next wakeup time of peer node, without exceptional process, each node on the transmission path can improve end-to-end delay in multi-hop topologies. And it becomes low power consumption by reducing unnecessary retransmissions. Additionally, we devise the protection method of VT. In our simulation results, end-to-end delay according to hop counts and traffic amount is compared with the X-MAC that is an asynchronous protocol recently developed. Furthermore, it is shown that the VT scheme decreases energy consumption due to the lower end-to-end delay than the X-MAC in multi-hop topologies.  相似文献   

5.
Idle listening is one of the main factors for energy consumption in wireless sensor networks, and the duty cycle mechanism is widely used to reduce idle listening. In this paper, we present a new receiver-initiated duty cycling MAC protocol for wireless sensor networks, called reordering-passive MAC (RP-MAC), which includes receiver wake-up time estimation scheme and frame reordering scheme. We evaluate the performance of RP-MAC in ns-2 network simulator, and the simulation results shows that RP-MAC achieves higher energy efficiency, higher network throughput and lower end-to-end delay compared to other passive protocols, especially in case of heavy traffic or low duty cycle.  相似文献   

6.
Energy conservation is one of the crucial issues in wireless sensor network (WSN). A significant solution to conserve energy is done by deploying duty cycle management mechanisms in the WSN applications. This paper reviews several duty cycle mechanisms in WSN such as Duty Cycle Learning Algorithm, adaptive media access control (MAC) protocol for efficient IEEE 802.15.4 (AMPE), distributed duty cycle management (DDCM), distributed duty cycle management low power broadcast (DDCM + LPB) and distributed beacon only period. These mechanisms change their parameters such as idle listening, packet accumulation and delay in the end device transmitting queue to improve the energy conservation in WSN. The performances of these different energy conservation mechanisms have been compared at the MAC layer of IEEE 802.15.4 standard. It is found that the DDCM + LPB has made approximately 100 % enhancement in terms of average energy efficiency as compared to the other mechanisms. DDCM + LPB has significant enhancements by adapting the duty cycle according to the network traffic load condition. Using this mechanism, the duty cycle is increased when the traffic load increases and vice versa. Its energy efficiency also outperforms the conventional DDCM by the average of 10 %.  相似文献   

7.
To reduce the energy cost of wireless sensor networks (WSNs), the duty cycle (i.e., periodic wake-up and sleep) concept has been used in several medium access control (MAC) protocols. Although these protocols are energy efficient, they are primarily designed for low-traffic environments and therefore sacrifice delay in order to maximize energy conservation. However, many applications having both low and high traffic demand a duty cycle MAC that is able to achieve better energy utilization with minimum energy loss ensuring delay optimization for timely and effective actions. In this paper, nW-MAC is proposed; this is an asynchronously scheduled and multiple wake-up provisioned duty cycle MAC protocol for WSNs. The nW-MAC employs an asynchronous rendezvous schedule selection technique to provision a maximum of n wake-ups in the operational cycle of a receiver. The proposed MAC is suitable to perform in both low- and high-traffic applications using a reception window-based medium access with a specific RxOp. Furthermore, per cycle multiple wake-up concept ensures optimum energy consumption and delay maintaining a higher throughput, as compare to existing mechanisms. Through analysis and simulations, we have quantified the energy-delay performance and obtained results that expose the effectiveness of nW-MAC.  相似文献   

8.
In duty cycled MAC protocols, multi-packet, multi-flow and multi-hop traffic patterns experience significant latencies, which are partially due to duty cycling. Several cross-layer routing/MAC schemes have been proposed to mitigate this latency. However, they utilize routing information from a single flow and/or a single packet perspective, thus limiting their adaptation to varying traffic loads and patterns. In this paper, we propose a novel Cross-Layer MAC protocol (CL-MAC) for WSNs, to efficiently handle multi-packet, multi-hop and multi-flow traffic patterns while adapting to a wide range of traffic loads. CL-MAC’s scheduling is based on a unique structure of flow setup packets that efficiently utilize routing information to transmit multiple data packets over multiple multi-hop flows. Unlike other MAC protocols, supporting construction of multi-hop flows, CL-MAC considers all pending packets in the routing layer buffer and all flow setup requests from neighbors, when setting up a flow. This allows CL-MAC to make more informed scheduling decisions, reflecting the current network status, and dynamically optimize its scheduling mechanism accordingly. We evaluate CL-MAC through extensive ns-2 simulations and compare its performance to the state of the art, over various networks and for a wide variety of traffic loads and patterns. In all our experiments, CL-MAC substantially reduces end-to-end latency, increases delivery ratio while reducing the average energy consumed per packet delivered.  相似文献   

9.
It has been discussed in the literature that the medium-access control (MAC) protocols, which schedule periodic sleep–active states of sensor nodes, can increase the longevity of sensor networks. However, these protocols suffer from very low end-to-end throughput and increased end-to-end packet delay. How to design an energy-efficient MAC protocol that greatly minimizes the packet delay while maximizing the achievable data delivery rate, however, remains unanswered. In this paper, motivated by the many-to-one multihop traffic pattern of sensor networks and the heterogeneity in required data packet rates of different events, we propose an aggregated traffic flow weight controlled hierarchical MAC protocol (ATW-HMAC). We find that ATW-HMAC significantly decreases the packet losses due to collisions and buffer drops (i.e., mitigates the congestion), which helps to improve network throughput, energy efficiency, and end-to-end packet delay. ATW-HMAC is designed to work with both single-path and multipath routing. Our analytical analysis shows that ATW-HMAC provides weighted fair rate allocation and energy efficiency. The results of our extensive simulation, done in ns-2.30, show that ATW-HMAC outperforms S-MAC; traffic-adaptive medium access; and SC-HMAC.  相似文献   

10.
In the context of IEEE 802.11b network testbeds, we examine the differences between unicast and broadcast link properties, and we show the inherent difficulties in precisely estimating unicast link properties via those of broadcast beacons even if we make the length and transmission rate of beacons be the same as those of data packets. To circumvent the difficulties in link estimation, we propose to estimate unicast link properties directly via data traffic itself without using periodic beacons. To this end, we design a data-driven routing protocol Learn-on-the-Fly (LOF). LOF chooses routes based on ETX/ETT-type metrics, but the metrics are estimated via MAC feedback for unicast data transmission instead of broadcast beacons. Using a realistic sensor network traffic trace and an 802.11b testbed of ~195 Stargates, we experimentally compare the performance of LOF with that of beacon-based protocols, represented by the geography-unaware ETX and the geography-based PRD. We find that LOF reduces end-to-end MAC latency by a factor of 3, enhances energy efficiency by a factor up to 2.37, and improves network throughput by a factor up to 7.78, which demonstrate the feasibility and the potential benefits of data-driven link estimation and routing.  相似文献   

11.
基于SMAC的无线传感器网络MAC协议的分析与优化   总被引:2,自引:0,他引:2  
首先对MAC协议进行了相关介绍。然后重点介绍了一种基于竞争的无线传感器网络MAC层协议S-MAC协议。其核心是提出了一种新的无线传感器网络的MAC协议设计方案。基于动态调整占空比的思想,提出了ATC-SMAC协议。该协议在S-MAC协议的基础上改进了固定占空比的劣势,根据每个节点上的数据包的平均延迟调整占空比。通过动态地调整每个节点的占空比,使不同流量的节点拥有不同的工作时间,协议根据不同节点的流量情况自适应地对其占空比进行调整。经过仿真试验,得到ATC-MAC在网络端对端延迟、能量消耗以及吞吐量方面较S-MAC协议都有比较明显的提高。  相似文献   

12.
Presents an assessment of several existing medium access control (MAC) protocols in terms of four criteria: cyclicity/cycle gap, access mode, delay invulnerability, and prioritized access. From these protocols, we selected the adaptive cycle cell insertion (ACCI) mechanism as showing the most promise of satisfying these criteria and modeled our proposed prioritized ACCI (PACCI) protocol on its more desirable features. PACCI is suitable for client-server-based gigabit LANs and MANs. It provides fair access for regular nodes by means of regular cycles, and offers prioritized access to privileged nodes by means of restricted cycles. PACCI's bandwidth allocation for the regular and restricted cycles is then based on an analytic model in an attempt to guarantee QoS by maintaining throughput under diverse traffic loads. Our analysis considered throughput as a function of the restricted cycle/regular cycle ratio (RS/RG) and showed that as RS/RG grows, the throughput difference between privileged and regular nodes increases. Simulation results confirmed the accuracy of the analysis. We also found that the throughput and end-to-end delay are not dependent on the cycle ratio under light load conditions, but that as the network load increases, the benefit of having restricted cycles becomes evident. Simulation results also showed that PACCI assures minimal delay for privileged nodes while incurring reasonable performance degradation for regular nodes  相似文献   

13.
Duty cycling is a fundamental approach used in contention‐based medium access control (MAC) protocols for wireless sensor networks (WSNs) to reduce power consumption in sensor nodes. Existing duty cycle‐based MAC protocols use either scheduling or low‐power listening (LPL) to reduce unnecessary energy lost caused by idle listening and overhearing. This paper presents a new asynchronous duty‐cycled MAC protocol for WSN. It introduces a novel dual preamble sampling (DPS) approach to efficiently coordinate channel access among nodes. DPS combines LPL with a short‐strobed preamble approach to significantly reduce the idle‐listening issue in existing asynchronous protocols. We provide detailed analysis of the energy consumption by using well‐known energy models and compare our work with B‐MAC and X‐MAC, two most popular asynchronous duty cycle‐based MAC protocols for WSNs. We also present experimental results based on NS‐2 simulations. We show that depending on the traffic load and preamble length, the proposed MAC protocol improves energy consumption significantly without degrading network performances in terms of delivery ratio and latency. For example, for a traffic rate of 0.1 packets/s and a preamble length of 0.1 s, the average improvement in energy consumption is about 154%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Radio transceiver often consumes most of energy in a sensor node. To achieve low power consumption, every node periodically schedules its radio transceiver into sleep or active state, which is usually called duty cycle mechanism in MAC protocol. In this paper, we design a novel Prediction-Based Asynchronous MAC protocol (PBA-MAC) for heavy traffic load in wireless sensor networks. PBA-MAC applies an efficient wakeup mechanism to save the energy of a sensor node as much as possible. It reduces communication cost by enabling a sender to predict the intended receiver’s wakeup time, without introducing unnecessary idle listening or overhearing cost. In addition, it introduces an exponential advance mechanism to handle the prediction error caused by clock drift and hardware platform latency. More importantly, its backcast-based retransmission characteristic can efficiently resolve severe wireless collisions caused by concurrent traffic flows. The PBA-MAC is implemented in Contiki operating system. We compare PBA-MAC to some existing energy-efficient MAC protocols. The experimental results show that PBA-MAC significantly improves network energy efficiency and reduces packet delivery latency even under heavy traffic load.  相似文献   

15.
In a regular wireless ad hoc network, the Medium Access Control (MAC) protocol coordinates channel access among nodes, and the throughput of the network is limited by the bandwidth of a single channel. The multi-channel MAC protocols can exploit multiple channels to achieve high network throughput by enabling more concurrent transmissions. In this paper, we propose a hybrid and adaptive protocol, called H-MMAC, which utilizes multi-channel resources more efficiently than other multi-channel MAC protocols. The main idea is to adopt the IEEE 802.11 Power Saving Mechanism and to allow nodes to transmit data packets while other nodes try to negotiate the data channel during the Ad hoc Traffic Indication Message window based on the network traffic load. The analytical and simulation results show that the proposed H-MMAC protocol improves the network performance significantly in terms of the aggregate throughput, average delay, fairness and energy efficiency.  相似文献   

16.
This paper studies the performance of various strategies for scheduling a combined load of unicast and multicast traffic in a broadcast WDM network. The performance measure of interest is schedule length, which directly affects both aggregate network throughput and average packet delay. Three different scheduling strategies are presented, namely: separate scheduling of unicast and multicast traffic, treating multicast traffic as a number of unicast messages, and treating unicast traffic as multicasts of size one. A lower bound on the schedule length for each strategy is first obtained. Subsequently, the strategies are compared against each other using extensive simulation experiments in order to establish the regions of operation, in terms of a number of relevant system parameters, for which each strategy performs best. Our main conclusions are as follows. Multicast traffic can be treated as unicast traffic, by replicating all multicast packets, under very limited circumstances. On the other hand, treating unicast traffic as a special case of multicast traffic with a group of size 1, produces short schedules in most cases. Alternatively, scheduling and transmitting each traffic component separately is also a good choice.  相似文献   

17.
Duty‐cycle at the media access control (MAC) layer plays a key role in energy savings and network lifetime extension. It consists in putting a node's radio in the sleep state as soon as it has no communication activity. Traditional wireless sensor network MAC protocols are designed with short duty‐cycles at the cost of long delays. Careful design is required for joint energy‐delay constrained applications, where the optimal parameters should be thoroughly derived. The present paper deals with this issue and mathematically derives optimal values of key MAC parameters under low data rate applications for 3 well‐known duty‐cycled MAC protocols, WiseMAC, SCP‐MAC, and LMAC as representatives of 3 MAC protocol categories, respectively, preamble‐sampling, slotted contention‐based, and frame‐based. The analysis provides also the optimum traffic sampling rate that guarantees the minimum energy consumption. It shows the role of these parameters in achieving the targeted end‐to‐end delay constraints under network models with uniform traffic generation, for ring and grid topologies. As a second contribution, the model is extended to nonuniform traffic scenarios, where a certain percentage of deployed nodes are relays whose role is to balance traffic forwarding and save the overall network energy. The results reveal that different optimal internal MAC parameters and traffic generation rates can be found for different configurations of relay nodes deployment, which achieve minimal network energy consumption while satisfying the application required end‐to‐end delay threshold.  相似文献   

18.
Multiple access control (MAC) protocols play a significant role in wireless LANs. The IEEE 802.11 MAC protocol specifies two coordination functions that are Distributed Coordination Function (DCF) and Point Coordination Function (PCF). While both DCF and PCF are available in a wireless cell, we propose a novel access mechanism called Adaptive Coordination Function (ACF) to support various classes of traffic. The ACF superframe comprises two periods, one TDMA period designed for real-time traffic and followed by an adaptive period which adaptively employs DCF or PCF to support non-real-time traffic. In this paper, we apply the theory of M/G/1 queues to analyze the performance of adaptive period in terms of queuing delay, end-to-end delay, and saturation throughput. With our analytic model, DCF or PCF can be invoked appropriately according to the number of stations, packet arrival rate, packet payload size, and effective channel bit rate. Analytical results are derived for an extensive throughput and delay performance evaluation of both DCF and PCF.  相似文献   

19.
Several Medium Access Control (MAC) protocols have been proposed for wireless sensor networks with the objective of minimizing energy consumption. For example, Sensor-MAC (S-MAC) was proposed to reduce energy consumption by introducing a duty cycle. However, S-MAC cannot handle variable loads because of its static duty cycle. Timeout-MAC (T-MAC) introduced an adaptive duty cycle to handle variable traffic loads. However, nodes that do not take part in data exchange waste energy because of continuous renewal of their timeout values. To eliminate this energy waste, we propose ADV-MAC, a MAC protocol for wireless sensor networks that introduces the concept of advertising for data contention. ADV-MAC minimizes the energy lost in idle listening while maintaining an adaptive duty cycle to handle variable loads. Additionally, ADV-MAC enables energy efficient MAC-level multicasting. We derive an analytical model for the packet delivery ratio and the energy consumption of the protocol. We verify the analytical model with simulations and use the model to choose an optimal value of the advertisement period. Simulations show that the optimized ADV-MAC provides substantial energy gains (50–70% less than T-MAC and S-MAC for the scenarios investigated) while faring as well as T-MAC in terms of packet delivery ratio and latency.  相似文献   

20.
Sensors based on personalized healthcare systems have been widely used in the medical field. However, energy limitations have greatly hindered the further development of medical sensors. For the traditional Medium Access Control (MAC) protocol, the duration of low-power listening is fixed because it ignores that the available energy of sensors is different in some situations, which leads to a high delay and low energy utilization. In this paper, a Maximum Listening Length MAC (MLL-MAC) protocol is proposed to fully utilize the energy in the sensor-based systems. The MLL-MAC protocol is an improvement of the Receiver-Initiated (RI) MAC protocol. The main advance is that the sensor node performs the following additional operations: (1) The sender sends a beacon when it wakes up and sends data, thus establishing a communication link with the receiver in the listening state; (2) The receiver keeps listening as long as possible to reduce the delay when it wakes up and listens to the channel, which is different from the previous strategy in which the node turns into a sleep state immediately without receiving data. Furthermore, the sensor node can dynamically determine whether to send beacons and prolong listening duration according to its available energy level. The MLL-MAC protocol is evaluated through theoretical analysis and experimental results. The results show that, compared with the RI-MAC protocol, the MLL-MAC protocol can reduce the average end-to-end delay by 41.4% and improve the energy utilization by 15.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号