首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contact problem suffers from a numerical instability similar to that encountered in incompressible elasticity, in which the normal contact pressure exhibits spurious oscillation. This oscillation does not go away with mesh refinement, and in some cases it even gets worse as the mesh is refined. Using a Lagrange multipliers formulation we trace this problem to non-satisfaction of the LBB condition associated with equal-order interpolation of slip and normal component of traction. In this paper, we employ a stabilized finite element formulation based on the polynomial pressure projection (PPP) technique, which was used successfully for Stokes equation and for coupled solid-deformation–fluid-diffusion using low-order mixed finite elements. For the frictional contact problem the polynomial pressure projection approach is applied to the normal contact pressure in the framework of the extended finite element method. We use low-order linear triangular elements (tetrahedral elements for 3D) for both slip and normal pressure degrees of freedom, and show the efficacy of the stabilized formulation on a variety of plane strain, plane stress, and three-dimensional problems.  相似文献   

2.
3D fatigue crack growth problems are nowadays handled using X-FEM coupled with level set techniques. It is also well established that such an approach allows mesh-independent crack modelling and no remeshing during crack propagation. However, when contact and friction occur along the crack faces, a discretization of the internal variables linked to the interface law is necessary. The interface discretization is generally constructed from the finite elements cut by the crack. As a consequence, a mesh dependency between the bulk discretization and the interface discretization is introduced. However, the dimension of the possible non-linearities arising at the crack interface (like confined plasticity or unilateral contact with friction) may be several orders of magnitude finer than the crack size. A finer discretization is thus required to accurately capture these non-linearities. The aim of the present paper is to develop a method considering the 3D cracked structure and the crack interface as two independent global and local problems characterized by different length scales and different behaviors. Here, the interface is seen as an autonomous entity with its own discretization, variables and constitutive law. A formulation involving three-fields is used. The interface is linked to the global problem in a weak sense in order to avoid instabilities in the contact solution. Two iterative strategies are considered to solve the contact problem. Two-dimensional and three-dimensional numerical examples are presented to demonstrate the ability of the model to solve the contact at the crack interface with or without propagation at a given level of accuracy.  相似文献   

3.
A multiscale extended finite element method for crack propagation   总被引:1,自引:0,他引:1  
In this paper, we propose a multiscale strategy for crack propagation which enables one to use a refined mesh only in the crack’s vicinity where it is required. Two techniques are used in synergy: a multiscale strategy based on a domain decomposition method to account for the crack’s global and local effects efficiently, and a local enrichment technique (the X-FEM) to describe the geometry of the crack independently of the mesh. The focus of this study is the avoidance of meshing difficulties and the choice of an appropriate scale separation to make the strategy efficient. We show that the introduction of the crack’s discontinuity both on the microscale and on the macroscale is essential for the numerical scalability of the domain decomposition method to remain unaffected by the presence of a crack. Thus, the convergence rate of the iterative solver is the same throughout the crack’s propagation.  相似文献   

4.
An algorithm for analyzing the transient thermal coupling with the frictional contact between the multiple elastic–plastic bodies in finite deformation is presented using the R-minimum strategy. An arbitrarily shaped contact element strategy, named as node-to-point contact element strategy, is proposed to handle the thermomechanical frictional contact between finite deformation bodies. Assuming the material properties to be temperature dependent, the constitutive equations for both the thermomechanical frictional contact and the thermal-elastic–plastic materials are deduced respectively and applied in our finite element code. Finally, two examples are presented to show the efficiency and usefulness of this algorithm.  相似文献   

5.
In this paper,the problem of modeling crack in 2D viscoelastic media is studied using the extended finite element method.The paper focuses on the definition of enrichment functions suitable for cracks assessment in viscoelastic media and the generalized domain integrals used in the determination of crack tip parameters.The opening mode and mixed mode solutions of crack tip fracture problems in viscoelastic media are also undertaken.The results obtained by the proposed method show good agreement with the ana...  相似文献   

6.
基于二次插值重构有限元法(Twice interpolation Finite Element Method, TFEM)分析动态断裂力学问题并进行数值实验,考察TFEM在裂纹动态扩展模拟中的准确性和可靠性.由于TFEM保证节点处梯度场的连续性,因此裂尖附近的应力场可以得到较好的逼近.把该算法成功移植到自主开发的三维裂纹扩展仿真软件(ZonCrack)中.利用ZonCrack进行的裂纹扩展,分析结果表明:TFEM得到裂尖应力强度因子(Stress Intensity Factor, SIF)与解析解基本一致;裂纹扩展的模拟结果与实验值吻合良好.  相似文献   

7.
In the paper the model of finite elements for elastic contact problems was used. Real structures are modeled by finite elements and rigid finite elements. We calculate stresses in the surface of two substructures using Coulomb model of friction.The method given here is an iterative procedure which is planed to incorporate this technique in the system allowing for incremental elastic solution. The computer program is adapted to solving spatial problems.  相似文献   

8.
为研究混凝土梁的断裂过程,提出用基于二维扩展有限元法(eXtended Finite ElementMethod,XFEM)的黏聚性裂缝模型模拟混凝土简支梁在集中载荷作用下的断裂过程.推导考虑近裂尖奇异性的基于XFEM的黏聚性裂缝模型,得出裂缝开度随裂缝长度的变化曲线;对上述模型与相关文献用有限元结合节点释放技术对相同时间的裂缝扩展的计算结果进行比较,二者结果吻合良好,并与实际裂缝扩展过程相符.计算结果证实基于XFEM的黏聚性裂缝模型能有效进行混凝土梁的断裂过程模拟.  相似文献   

9.
New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadratures, which ensures that the final quadratures have minimal number of Gauss points. For weakly singular integrands, we apply a polar transformation that eliminates the singularity so that the integration can be performed efficiently and accurately. Numerical examples in elastic fracture using the extended finite element method are presented to illustrate the performance of the new integration techniques.  相似文献   

10.
《Computers & Structures》2007,85(3-4):225-232
Plastic and creep deformations lead to reduced stress levels ahead of the crack tip in a creep crack growth test. However, they can also cause microcracks, cavities and other defects forcing fracture. Numerous damage models are reported in the literature to describe the behavior. In this article, a damage model will be developed from different theories and will be used to describe the creep crack growth behavior of Waspaloy at 973 K. Material parameters for this model are adjusted to uniaxial creep and tensile tests. The calculated creep crack growth curves match very well with the experimental ones supporting the model.  相似文献   

11.
This study develops a novel hybrid method that combines the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for crack propagation modelling in brittle and quasi-brittle materials. A very simple yet flexible local remeshing procedure, solely based on the FE mesh, is used to accommodate crack propagation. The crack-tip FE mesh is then replaced by a SBFEM rosette. This enables direct extraction of accurate stress intensity factors (SIFs) from the semi-analytical displacement or stress solutions of the SBFEM, which are then used to evaluate the crack propagation criterion. The fracture process zones are modelled using nonlinear cohesive interface elements that are automatically inserted into the FE mesh as the cracks propagate. Both the FEM’s flexibility in remeshing multiple cracks and the SBFEM’s high accuracy in calculating SIFs are exploited. The efficiency of the hybrid method in calculating SIFs is first demonstrated in two problems with stationary cracks. Nonlinear cohesive crack propagation in three notched concrete beams is then modelled. The results compare well with experimental and numerical results available in the literature.  相似文献   

12.
扩展的多尺度有限元法基本原理   总被引:3,自引:0,他引:3  
阐述一种适用于非均质材料力学性能分析的扩展的多尺度有限元法(Extended Multiscale Finite Element Method,EMsFEM)的基本原理.该方法的基本思想是利用数值方法构造能反映胞体单元内部材料非均质影响的多尺度基函数,在此基础上求得粗网格层次的等效单元刚度阵,从而在粗网格尺度上对原问题进行求解,很大程度地减少计算量.以该方法进行的具有周期和随机微观结构的材料计算示例,通过与传统有限元法的结果比较,说明这一方法的有效性.EMsFEM的优势在于,能容易地进行降尺度计算,可较准确地求得单元内部的微观应力应变信息,在非均质材料强度和非线性分析中有很大的应用潜力.  相似文献   

13.
In this paper, a new approach is presented, for constitutive modeling of materials in finite element analysis, with potential applications in different engineering disciplines. The proposed approach provides a unified framework for modeling of complex materials, using evolutionary polynomial regression-based constitutive model (EPRCM), integrated in finite element analysis. Evolutionary polynomial regression (EPR) is a computing technique that generates a transparent and structured representation of the system being studied. The main advantage of EPRCM over conventional constitutive models is that it provides the optimum structure for the material constitutive model representation, as well as its parameters, directly from raw experimental (or field) data. The proposed algorithm provides a transparent relationship for the constitutive material model that can readily be incorporated in a finite element model (FEM). The incorporation of EPRCM into FEM will be presented and the application of the resulting methodology for material modeling in finite element analysis will be illustrated through two examples.  相似文献   

14.
提出一种利用扩展有限元法(eXtended Finite Element Method,XFEM)和虚拟裂缝模型对混凝土断裂过程区(Fracture Process Zone, FPZ)进行研究的方法.利用该方法可以求出裂缝扩展过程中混凝土FPZ的长度及位移和应力分布.利用该方法对一个三点弯曲混凝土梁进行研究,考察骨料粒径、不同软化律和不同初始裂缝长度对FPZ的影响.  相似文献   

15.
16.
We examine the coupling of the patterned-interface-reconstruction (PIR) algorithm with the extended finite element method (X-FEM) for general multi-material problems over structured and unstructured meshes. The coupled method offers the advantages of allowing for local, element-based reconstructions of the interface, and facilitates the imposition of discrete conservation laws. Of particular note is the use of an interface representation that is volume-of-fluid based, giving rise to a segmented interface representation that is not continuous across element boundaries. In conjunction with such a representation, we employ enrichment with the ridge function for treating material interfaces and an analog to Heaviside enrichment for treating free surfaces. We examine a series of benchmark problems that quantify the convergence aspects of the coupled method and examine the sensitivity to noise in the interface reconstruction. The fidelity of a remapping strategy is also examined for a moving interface problem.  相似文献   

17.
The literature available on gear tooth contact stress problems is not very extensive and that available does not explain the method by which analysis was carried out. In this paper an attempt has been made to study the contact stresses of a pair of mating gear teeth, under static conditions, by using a two-dimensional finite element method and the Lagrangian multiplier technique. The contact condition at the neighbouring node pair, namely, the contact existing over a number of node pairs in the contact zone, has been considered. To study the effect of friction between the mating gear teeth a range of average static friction coefficients, from 0.0 to 0.3, has been considered. The actual length of contact against the calculated length of contact is discussed. The variation of contact stress along the contact surface in a direction normal to the mating surfaces, which will give an idea about the depth of hardening required, is also presented.  相似文献   

18.
针对在微观状态下结构力学行为会受尺度效应影响的问题,在偶应力理论中考虑微观结构的旋转梯度可以较好解释结构的尺度效应.建立基于一般偶应力理论的有限元法的基本方程,并在裂纹尖端引入奇异单元,计算受单向拉伸的中心斜裂纹板裂纹尖端场的应力强度因子(Stress Intensity Factor,SIF),分析特征长度变化对SIF的影响,对比偶应力理论下的结果与经典理论下的结果.结果表明:在裂纹尖端引入奇异单元可以提高计算精度和稳定性;偶应力使得裂纹尖端SIF比经典理论下的值小,并且SIF随着特征长度增大而减小.  相似文献   

19.
An efficient stabilized finite element method for modeling of gas discharge plasmas is represented which provides wiggle-free solutions without introducing much artificial diffusion. The stabilization is achieved by modifying the standard Galerkin test functions by means of a weighted quadratic term that results in a consistent Petrov-Galerkin formulation of the charge carriers in the plasma. Using the example of a glow discharge plasma in argon, it is shown that this efficient method provides more accurate results on the same spatial grid than the widely used finite difference approach proposed by Scharfetter-Gummel if the weighting factor is determined in dependence on the local Péclet number and the modified test functions are consistently applied to all terms of the governing equations.  相似文献   

20.
As a Lagrangian particle method, the material point method (MPM) has the potential to model extreme deformation of materials, where the traditional finite element method (FEM) often encounters mesh distortion and element entanglement which lead to numerical difficulties. However, FEM is more accurate and efficient than MPM for problems with small deformation. It is therefore desirable to model the body with extreme deformation by MPM and the body with small deformation by FEM, respectively. In this paper, a method to handle the contact interaction between the MPM body and the FEM body is proposed, which is implemented on the background grid of MPM. By this method, FEM is coupled with MPM and a hexahedral element is incorporated into our 3D explicit MPM code MPM3D®. Several numerical examples, including plate impact, sphere rolling, perforation of thick plate, and fluid–structure interaction problems, are studied and the numerical results are in good agreement with analytical solution and results available in the literature. The coupling of FEM and MPM offers advantages of both FEM and MPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号