首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents new absolute measurements of the thermal conductivity and of the thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. We measured seven isotherms in the supercritical dense gas at temperatures between 157 and 324 K with pressures up to 70 MPa and densities up to 32 mol · L–1 and five isotherms in the vapor at temperatures between 103 and 142 K with pressures up to the saturation vapor pressure. The instrument is capable of measuring the thermal conductivity with an accuracy better than 1% and thermal diffusivity with an accuracy better than 5%. Heat capacity results were determined from the simultaneously measured values of thermal conductivity and thermal diffusivity and from the density calculated from measured values of pressure and temperature from an equation of state. The heat capacities presented in this paper, with a nominal accuracy of 5%, prove that heat capacity data can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be invaluable when applied to fluids which lack specific heat data or an adequate equation of state.  相似文献   

2.
The thermal conductivities of three plasma-sprayed cermets have been determined over the temperature range 23–630°C from the measurement of the specific heat, thermal diffusivity, and density. These cermets are mixtures of Al and SiC prepared by plasma spray deposition and are being considered for various applications in magnetic confinement fusion devices. The samples consisted of three compositions: 61 vol% Al/39 vol% SiC, 74vol% Al/26vol% SiC, and 83 vol% Al/17 vol% SiC. The specific heat was determined by differential scanning calorimetry through the Al melt transition up to 720°C, while the thermal diffusivity was determined using the laser flash technique up to 630°C. The linear thermal expansion was measured and used to correct the diffusivity and density values. The thermal diffusivity showed a significant increase after thermal cycling due to a reduction in the intergrain contact resistance, increasing from 0.4 to 0.6 cm2·–1 at 160°C. However, effective medium theory calculations indicated that the thermal conductivities of both the Al and the SiC were below the ideal defect-free limit even after high-temperature cycling. The specific heat measurements showed suppressed melting points in the plasmasprayed cermets. The 39 vol% SiC began a melt endotherm at 577°C, which peaked in the 640–650°C range depending on the sample thermal history. Chemical and X-ray diffraction analysis indicated the presence of free silicon in the cermet and in the SiC powder, which resulted in a eutectic Al/Si alloy.Paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

3.
In this paper, we present a comparison of the thermal diffusivity and thermal conductivity data of steam in the temperature range 0.02 K<T-T c< 140 K with a recent formulation of crossover from singular to regular behavior of the transport properties of fluids. We have used two sets of experimental data previously obtained by the authors. The agreement between experimental and calculated data is good.  相似文献   

4.
Using the transient hot-wire method, measurements were made for solid NaBr of both the thermal conductivity and the heat capacity per unit volume. The measurements were performed in the temperature range 100 to 400 K and at pressures up to 2 GPa. An adiabatic compression technique allowed the determination of the thermal expansivity as a function of pressure at room temperature. The heat capacity did not vary with pressure. Analysis of the thermal conductivity data showed that it can be described adequately by the Leibfried-Schlömann formula. For temperatures up to 400 K only acoustic modes needed to be taken into account. A small contribution of optic modes to the heat transport might be apparent at the highest temperatures.  相似文献   

5.
As part of a group contribution study on the liquid thermal conductivity of synthetic fuel components, experiments were performed to study the effects of dimethyl and ethyl-group additions to cyclohexane. A transient hot-wire apparatus was used to measure the thermal conductivity of these three fluids between ambient pressure and 10.4 MPa over a temperature range of 300 to 460 K. Thermal conductivities measured with this instrument have been assigned an accuracy of ±2% based upon a standard deviation comparison with a toluene standard established by Nieto de Castro et al. (1986). The thermal conductivities and excess thermal conductivities of the naphthenes investigated have been successfully linearized by plotting the data versus reduced density exponentiated to the power of five. By using data previously reported by Perkins (1983) and Li et al. (1984), this linear reduced density method is demonstrated for methyl, dimethyl, and ethyl additions to cyclohexane, as well as methyl and dimethyl additions to benzene. The naphthenes have been shown to have similar intercepts, with slope changes dependent upon the functional group attached to cyclohexane. The aromatics have a less pronounced slope change with additional functional groups attached to the benzene base. This instrument was also used to determine heat capacities, via the thermal diffusivity, to within ±10%.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

6.
A comparative method is presented, suitable to measure both thermal diffusivity and conductivity of low-conducting solids. The repeatibility of the measurements of thermal conductivity is 3%, whereas for diffusivity is 6%. Data for some low-conducting materials are given, consistent with those reported in the literature.  相似文献   

7.
A. Khalil 《低温学》1982,22(6):310-312
A double specimen technique is used in measuring the thermal conductivity and diffusivity of low thermal conductivity materials. In this technique good thermal contact is maintained between the heat source and sink and two geometrically similar specimens. A thin-copper heater plate is compressed between the two specimens and the temperature difference is measured between the heat source and the temperature controlled heat sink. Thermal conductivity is determined at steady state conditions by the differential method while the diffusivity is determined from transient measurements combined with an analytical solution to the one dimensional solution of the diffusion equation.  相似文献   

8.
Accurate and simultaneous measurements of the thermal conductivity and thermal diffusivity of toluene andn-heptane were made with an improved transient hot-wire method by using a transfer function having a feedback loop, in the temperature range of 0 to 45°C at atmospheric pressure. The accuracy of the empirical equations as a function of temperature is estimated to be 0.4 to 0.5% for the thermal conductivity and about 4% for the thermal diffusivity. Paper presented at the Fourth Asian Thermophysical Properties Conference, September 5–8, 1995, Tokyo, Japan.  相似文献   

9.
This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.  相似文献   

10.
The one-dimensional heat diffusion equation has been solved analytically for the case of a heat pulse of the form F(t) = exp(–t/)/ applied to the front face of a homogeneous body including the effects of heat loss from the front and back faces. Approximate expressions are presented which yield a simple, accurate technique for the determination of the thermal diffusivity and specific heat, suitable to a wide range of heat-pulse time constant and heat-loss parameters, without recourse to graphical techniques or requiring further computer analysis. A procedure is described for the determination of an effective time constant to allow application of the present results to the case of a nonexponential heat pulse. Experimental results supporting the theoretical analysis are presented for five samples of silicon germanium alloys of various thicknesses, determined using a xenon flash tube heat-pulse exhibiting an exponential dependence. Proper consideration of the experimental heat pulse shape is shown to lead to reliable corrections to the apparent thermal diffusivity, even for relatively long heat-pulse times.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

11.
The thermal conductivity of partially stabilized zirconia was measured over the temperature range 320–1273 K using the radial heat flow method. The data have an absolute uncertainty of about ±2% and repeat measurements showed no evidence of changes in the thermal conductivity at high temperatures. This also was true for the thermal diffusivity data, which were obtained in vacuum over the temperature range 300–1473 K. Both sets of thermal conductivity data pass through minima at high temperatures. Quantitative differences were observed in the temperatures and thermal conductivities of the two minima. The results were analyzed by assuming parallel conduction by phonons and photons, and the phonon component was identified by fitting lower-temperature data. Extrapolating this curve allowed identification of the photon contribution to the thermal conductivity at high temperatures. The photon contribution approached a T 3 function and was larger in the thermal conductivity specimens. The difference in the photon contributions correlates with changes in the optical properties of the samples produced during the high temperature measurments.  相似文献   

12.
An improved parallel-wire technique for simultaneous measurement of thermal conductivity and thermal diffusivity is presented. The deviation between experimental results and recommended (or another author's) values is less than 5% for fused quartz and refractory brick.  相似文献   

13.
AlN/聚乙烯复合基板的导热性能   总被引:28,自引:0,他引:28  
利用模压法制备 AlN/聚乙烯复合基板。初步研究了 AlN的结晶形态和填加量对复合基板导热性能的影响,并初步探讨了复合材料热导率的计算模型.结果表明:复合基板的热导率随AlN填加量的增大,最初变化很小,而后迅速升高,随后增长速度又逐渐降低.AlN以晶须形态填加,对提高复合材料的热导率最为有利,纤维次之,粉体最差.  相似文献   

14.
低温烧结AlN陶瓷的微结构和热导率   总被引:3,自引:0,他引:3  
采用CaF2,Y2O3和Li2CO3做添加剂,在低温下制备了高热导率的AlN陶瓷,通过SEM,TEM和XRD研究了AlN陶瓷在烧结过程中微结构及晶格常数的变化及其对热导率的影响。研究发现,当使用CaF2-Y2O3做添加剂时,液相对晶粒浸润性较差。不利于AlN晶格的纯化。而添加Li2O-CaF2-Y2O3的AlN陶瓷在烧结温度之前已经完成了液相的重新分布,液相与AlN晶粒之间有较好的浸润性,这促进了AlN陶瓷的致密化和AlN晶格的纯化,有利于获得较高的热导率。  相似文献   

15.
A transient short-hot-wire technique is proposed and used to measure the thermal conductivity and thermal diffusivity of liquids simultaneously. The method is based on the numerical evaluation of unsteady heat conduction from a wire with the same length diameter ratio and boundary conditions as those in the experiments. To confirm the applicability and accuracy of this method. Measurements were made for five sample liquids with known thermophysical properties and were performed under both normal gravity and microgravity conditions. The results reveal that the present method determines both the thermal conductivity and the diffusivity within 2 and 5%. respectively. The microgravity experiments clearly indicate that even under normal gravity conditions, natural-convection effects are negligible for at least l s after the start of heating. This method would be particularly suitable for a valuable and expensive liquid, and has a potential for application to electrically conducting and or corrosive liquids when the probe is effectively coated with an insulating and anticorrosive material. Paper presented at the Fourth Asian Thermophysical Properties Conference, September 5–8, 1995, Tokyo, Japan.  相似文献   

16.
There is increasing work on the use of flax fibers as reinforcement for manufacturing composites because of their lower cost and environmental benefit. During manufacturing of such natural fiber–plastic composites, heat transfer is involved, but information about the thermal conductivity and thermal diffusivity at the processing temperatures is not available. In this study, the thermal conductivity, thermal diffusivity, and specific heat of flax fiber–high density polyethylene (HDPE) biocomposites were determined in the temperature range of 170–200 °C. The fiber contents in biocomposites were 10%, 20%, and 30% by mass. Using the line-source technique, the instrumental setup was developed to measure the thermal conductivity of biocomposites. It was found that the thermal conductivity, thermal diffusivity, and specific heat decreased with increasing fiber content, but thermal conductivity and thermal diffusivity did not change significantly with temperature in the range studied. The specific heat of the biocomposites increased gradually with temperature.  相似文献   

17.
A method for the simultaneous measurement of thermal diffusivity and specific heat by a single rectangular heating pulse on a finite cylindrical specimen is described. The method takes into account radiation losses from all the surfaces of the specimen. The theoretical principle of the technique was studied by solving the transient heat conduction equation for a finite disk heated on the front surface by a single rectangular radiant energy pulse. An apparatus was constructed to comply with the theoretical conditions and was connected to a personal computer. Thermal diffusivity and specific heat were determined from the data obtained on the temperature response of the back surface of the specimen and from the theoretical results. This method can be applied to materials having a wide range of thermal conductivity values and has a good accuracy at high temperatures. Examples of the measurements are presented.Invited paper presented at the Ninth Symposium on Thermophysical Properties, June 24–27, 1985, Boulder, Colorado, U.S.A.  相似文献   

18.
In theory, the hot-wire technique for measuring the thermal conductivity of liquids can be used simultaneously to determine the thermal diffusivity. In practice, however, the latter property has so far been determined only with moderate accuracy because of (a) inaccurate bridge balancing due to drift problems, (b) parasitic capacities that delay the heating, and (c) poor precision in the determination of the time. A new measurement procedure has been developed which features (a) a short measuring time, (b) a reduced significance of the balancing technique, (c) a good reproducibility, and (d) a low sensitivity to most error sources. Thermal conductivity and thermal diffusivity results using this procedure, for toluene and n-heptane, which are the generally accepted standards for thermal conductivity, are presented and compared with results from other sources.  相似文献   

19.
Lowering the thermal conductivity of thermal barrier coatings used to protect blade and vane airfoils represents an important challenge for gas turbine designers and manufacturers. Dense zirconia‐based materials have been prepared by solid state reaction methods to determine their thermal properties up to 1000 °C. Partially stabilised zirconias having a thermal conductivity 40 % lower than the thermal conductivity of the most widely used system (ZrO2‐8wt.%Y2O3) have been obtained.  相似文献   

20.
添加CaF2-YF3的AlN陶瓷的热导率   总被引:11,自引:0,他引:11  
用CaF2和YF3做添加剂,在1750℃制备了热导率高于170W/m.K的的AlN陶瓷,并用XRD和SEM研究了AlN陶瓷在烧结过程中的相组成,微结构以及晶格参数的变化,并讨论了其对热导率的影响,研究发现,当使用CaF2-YF3做添加剂时,微结构差异对AlN陶瓷热导率的影响很小,AlN陶瓷的热导率主要由AlN晶格氧缺陷浓度决定,由于CaF2-YF3能有效降低AlN颗粒表面的氧含量,从而有利于获得高的热导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号