首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fiber optic sensor for the simultaneous measurement of refractive index and temperature is reported. The sensor consists of a high-birefringence fiber loop mirror and a section of single mode-coreless-single mode fiber structure. The single mode-coreless-single mode fiber structure served as a refractometer while the high-birefringence fiber loop mirror was used to measure temperature. The multimode interference valley of the single mode-coreless-single mode fiber structure was sensitive to the surrounding refractive index of liquids (96.42 nm/refractive index unit) and had almost no response to temperature fluctuations. The high-birefringence fiber loop mirror was highly sensitive to temperature (1.98 nm/°C) but was insensitive to changes in refractive index. The theoretical and experimental results demonstrated simultaneous measurement of temperature and refractive index. The optimum resolution was 2.07 × 10?4 refractive index units and 0.01°C.  相似文献   

2.
□ A novel optical electric field sensor based on evanescent coupling between a tapered fiber and a slab waveguide is proposed and demonstrated. Light in a tapered fiber evanescently couples into the slab waveguide and forms a wavelength resonant spectrum. A slice of a LiNbO3 crystal was used as the slab waveguide. External electric fields may change the refractive index of the crystal and thus make the resonant wavelengths shift. Therefore, an optical electric field sensor was obtained by measuring the wavelength shift caused by an external electric field. The principles and design of the proposed sensor are reported. The performance of the proposed sensor are demonstrated experimentally by detecting sinusoidal fields with 50 Hz and pulsed electric fields with a rise time of 1.2µs. The results show that the minimal detectable field was approximately 150 V/cm with a signal-to-noise ratio of three.  相似文献   

3.
A long-period fiber grating sensor was fabricated by periodically changing the structure of single-mode fiber with an electric arc discharge technique. After the fabrication, the refractive index and temperature sensitivities were optimized by etching the cladding with hydrofluoric acid solution. The experimental results illustrate that the thinner cladding shows relatively higher refractive index and temperature sensitivities for the same order cladding mode, which are accordant with that of numerical simulation. After the long-period fiber grating was etched for 15?min, average refractive index sensitivities of 214?nm/refractive index unit (RIU) (1.3333?–?1.3931) and 1987?nm/RIU (1.4115–1.4555) were achieved. An extremely higher refractive index sensitivity of 2731?nm/RIU appears near 1.4555. By systematically studying the temperature sensing characteristic of cladding-etched long-period fiber grating in this work for the first time, the temperature sensitivity can reach as high as 144.23?pm/°C when the ambient temperature changes from 30 to 80°C. This work provides a theoretical reference for the fabrication of a high-sensitivity refractive index and temperature sensor based on arc-induced long-period fiber grating.  相似文献   

4.
An optical fiber refractive index sensor based on fiber loop ring-down spectroscopy and a tapered fiber was fabricated using an ordinary single mode fiber with an arc fusion splicer. The performance of the sensor was controlled by the parameters of the tapered fiber. A fiber loop ring-down spectroscopy system was employed to enhance the sensitivity and demodulate the transmission spectrum. The results showed that a sensor with a waist diameter of 14 m and a length of 1.2 mm had good optical performance. By monitoring the ring-down time of the system, relatively high sensitivity of 411.576 s/ RIU was achieved with refractive index values from 1.333 to 1.412. This sensor offers few interferences, high sensitivity, easy fabrication, and low cost.  相似文献   

5.
A fiber sensor for simultaneous measurements of refractive index and temperature based on the integration of a fiber Bragg grating (FBG) with an external Fabry-Perot (F-P) cavity is presented. The fringe contrast of the interference spectrum generated by the F-P cavity is used to determine the external refractive index, while the wavelength shift of the FBG is used to measure temperature. The result showed that the refractive index and temperature sensitivity for the integrated sensor is 8.1 × 10(-6) and 0.01006 nm/°C, respectively.  相似文献   

6.
In this paper, a sensitive-enhanced single-mode fiber—tapered hollow core fiber—single-mode fiber Mach–Zehnder interferometer is demonstrated for refractive index sensing. The sensitivity was improved by forming an up-taper at the two splicing joints and concave cone in hollow core fiber. The up-tapered regions served as a more effective mode splitter/combiner, and the tapered hollow core fiber was used to generate a stronger evanescent field to enhance the interaction of light with the analyte. According to the principles of interference between the cladding and fundamental modes, we performed refractive index measurements. The experiments indicated that the proposed sensor has a high refractive index sensitivity of 214.97?nm/RIU in the refractive index range of 1.333–1.379, with a minimum refractive index measurement resolution of 9.3?×?10?5. In addition, the sensor had a low temperature response of 2.96?pm/°C in the range from 50 to 85°C and a low cross sensitivity of 1.377?×?10?5 RIU/°C. The proposed sensor is attractive for its high refractive index sensitivity, easy fabrication, low cross sensitivity, and good mechanical strength, making it of potential value for refractive index measurements for chemical and biological sensing.  相似文献   

7.
A novel fiber sensor composed by two single mode fibers and long period fiber grating based on a photonic crystal fiber prepared by periodic discharge heating has been experimentally investigated to measure refractive index and temperature. A Mach-Zehnder interferometer was formed due to the presence of two fusion spliced collapsed regions in the photonic crystal fiber. The resonance dip and interference pattern were differently influenced by the ambient disturbance, so the dual-parameters were simultaneously measured by analyzing the characteristics of transmission spectrum. After the experimental measurements, refractive index and temperature sensitivities of 117.28?nm/RIU and ?86.29?pm/°C were realized. Therefore, the reported sensor with advantages of easy fabrication, simple structure, and small size has the potential for simultaneous refractive index and temperature measurements involving biochemical sensing applications.  相似文献   

8.
Temperature sensor based on optical ring resonator has been demonstrated with its constituent material as silicon (Si-fiber) and germanium (Ge-fiber) in this work. It has been done through optical delay line signal processing technique in Z-domain. The group indices of both the materials vary with the change in temperature due to the thermo-optic effect in materials. Thus temperature dependence of free spectral range forms the basis of modeling the sensors. Silicon (Si) fiber based optical sensor can sense the temperature in the range 30–500 °C and that for germanium (Ge) fiber the range is ?25 to 300 °C. Obtained temperature sensitivities for Ge and Si-fibers are 5.55 and 2.97 MHz/°C respectively.  相似文献   

9.
An all-fiber Sagnac temperature sensor based on 3?dB tapered coupling and ethanol selective-filled photonic crystal fiber was demonstrated theoretically and experimentally. The ethanol selectivity-filled photonic crystal fiber has noncircular symmetry and thus exhibits birefringence. The ethanol selective-filled photonic crystal fiber, acting as the sensing element, was inserted in a Sagnac loop interferometer to measure temperature. The output spectra of Sagnac interferometer applied different temperatures were measured and analyzed. Experimental results have shown the temperature sensitivity of the Sagnac interferometer is 1.65?nm/°C in the range of 25–33°C.  相似文献   

10.
微型膜结构全光纤珐珀干涉高温传感器   总被引:2,自引:0,他引:2  
制作了一种微型膜结构的全光纤在线珐珀干涉式高温传感器。该传感器是在单模光纤端面依次熔接一段大芯径空芯光纤和一段研磨的多模光纤膜片而构成的,因此,温度引起的珐珀腔光程差改变量由空芯光纤的热膨胀和温度引起腔内压强改变从而改变膜片的扰度两部分组成,从而使相同温度变化下传感器的光程差变化量更大,分辨率更高。实验结果表明,在100~650℃,该传感器单位温度变化的光程差变化量约为1.029 nm,温度分辨率约为1.5℃,测量线性度约为0.996 7,且滞回小,重复性好。这种膜结构的全光纤珐珀干涉式高温传感器因其体积小,温度分辨率高,将在多点高温测量领域有好的应用前景。  相似文献   

11.
As an important member of the optical fiber sensor family, long period fiber gratings (LPFG) have attracted increased attention due to their outstanding characteristics. The LPFG is a transmission fiber grating without backward reflection, and isolation is not required in the sensing system. The resonant wavelength and transmissivity of LPFGs are very sensitive to changes in refractive index, temperature, strain and transverse load, so they are widely used. In this article, recent advances in biological and chemical applications of LPFG sensors are described. Various methods for improving the sensitivity of LPFG sensors are summarized, such as reducing the diameter of the cladding and cascading. In addition, an important method involves the coating of the LPFG sensor with a specific recognition element for biomass detection or a sensitive metal film for chemical detection. The structural parameters and principles in the literature are discussed in detail. This article analyzes and compares the progress and deficiencies in the detection process and anticipates future developments.  相似文献   

12.
A novel torsion sensor employing a short length of polarization maintaining photonic crystal fiber was inserted into the fiber loop mirror with an output probe. The sensing scheme was described theoretically by a Jones matrix and experimentally demonstrated. The results showed that the sensitivity of the intensity loss in response to the twist angle may be up to 0.0394 dB/° and a resolution of 0.025° was achieved. This torsion sensor is attractive due to its compact size, insensitivity to temperature, and suitability for longer distance transmission than conventional sensors.  相似文献   

13.
An optical fiber sensor based on a multimode tapered fiber cascading fiber Bragg grating has been proposed and experimentally demonstrated for the simultaneous measurement of humidity and temperature. The sensor was constructed using a tapered fiber that was coated with polyvinyl alcohol and a fiber Bragg grating with high reflectivity. The measurement of humidity and temperature was achieved by monitoring changes in reflective optical power and spectral shift, respectively. Due to the different measurement methods, the effect of temperature on humidity measurement may be ignored. The theoretical analysis and experimental results show that the highest sensitivities of 0.33 µW/%RH and 10.9?pm/°C were achieved when the diameter of the taper waist was 26?µm and the thickness of coating was 3.3?µm. Due to the advantages of good linearity, low cost of fabrication and convenient operation, the proposed sensor is promising for simultaneously measuring humidity and temperature.  相似文献   

14.
□ A novel simultaneous method of strain and temperature measurement based on a polarization maintaining fiber Bragg grating loop mirror is proposed and demonstrated. The sensing head was composed of a fiber loop mirror and a section of fiber Bragg grating made of a polarization maintaining fiber. The Bragg wavelengths of the fiber grating in the polarization maintaining fiber were along slow and fast axis showing different sensitivities to strain and temperature with the interferometric peak wavelength of the fiber loop mirror. By monitoring the shifts of the Bragg wavelength and interferometric peak of the fiber loop mirror, with its temperature sensitivity of 0.1167 nm/°C and strain sensitivity of 0.0093 nm/μ?, a temperature measurement resolution about 0.009°C and a strain measurement resolution of 1.08 μ? was achieved theoretically and experimentally.  相似文献   

15.
A sensing system based on a Fabry-Perot cavity formed by two fiber Bragg gratings for simultaneous measurements of temperature and liquid concentration is reported. Detailed analysis and discussion of the spectral transmission characteristics of the device are provided based on Coupled-Mode Theory. Through numerical simulation of spectral transmission, reflection spectra are shown to be influenced by the grating and Fabry-Perot cavity lengths, and sensing properties of temperature and liquid concentration are studied. A fast Fourier transform based demodulation method that simultaneously demodulates temperature and liquid concentration signals of the device was studied. The use of the fast Fourier transform provides absolute measurements with high sensitivity. The temperature sensitivity was 0.0104 nm/°C, the resolution was 1°C, the error of repeatability was 4%, the hysteresis was less than 0.010 nm, and the sensitivity of the measurement on liquid reflection was 0.01%.  相似文献   

16.
提出利用RC移相电路获得相位差为90°的输出信号,以取代相位差为90°的双光路,对干涉条纹计数时做正确判向,可以简化条纹计数法光纤Fabry-Perot腔干涉型液位传感器的结构,使之更实用和集成化。分析了F-P腔长与温度变化的关系,说明选择合适的腔体材料以及波纹管的热膨胀系数和初始长度,可在温度变化时保持腔长的较小变化。提出在传感器上安置温度传感器,预先测出F-P腔长与温度变化的关系,然后利用软件法对传感器输出进行温度补偿。实验表明:该软件补偿法能够较好的补偿温度变化对液位测量时造成的影响。  相似文献   

17.
光纤闭环液位控制系统   总被引:2,自引:0,他引:2  
研制一种利用光纤的闭环液位控制系统,光纤探针是由两根多模光纤焊接在一起形成的,光纤探针边界处的光线对周围介质的折射率敏感,系统使用两个光纤探针将液位控制在相应的范围内,设计的液位控制系统很好地解决了液滴效应带来的延迟问题。  相似文献   

18.
We propose a refractive index optical fiber sensor based on the micro cavities generated through the fiber catastrophic fuse effect. This sensor was tested in the measurement of solutions with refractive indices ranging from 1.3320 to 1.4280. The linear dependence of the reflection spectra modulation period as function of the surrounding environment refractive index leads to a resolution of 3 × 10−4 RIU. The proposed sensor is an innovative solution based on optical fiber damaged by the fuse effect, resulting in a cost effective solution.  相似文献   

19.
介绍了一种基于菲涅尔定律的光纤式液位测量方法,该方法利用介质折射率对双光纤之间光耦合效率的影响,使用两根并行排列的侧发光光纤作为测量元件,实现了对燃油液位的本质安全测量。通过理论分析得到了传感器的液位响应公式,进行传感器样机设计予以验证,在0.1~1 m范围内输出电压曲线变化趋势符合理论分析结果。  相似文献   

20.
We propose a novel refractive index sensor based on multimode microfiber knot-type loop (NL) interferometer. The middle portion (~5 cm) of a 15 cm long multimode fiber is etched in 48% hydrofluoric acid to reduce its diameter to ~12 μm. A NL of diameter <1 mm is made from the etched fiber. The ends of etched fiber are spliced with single-mode fibers for launching and detecting light from the NL interferometer. The NL introduces path differences to produce interferometric spectra with free spectral range ~16 nm. The spectrum shifts as the surrounding refractive index of the loop is changed by adding chemicals. We observe the highest sensitivity of the NL interferometer ~172 nm/RIU (refractive index unit) at a refractive index value 1.370 as obtained experimentally using commonly available chemicals. The design could be used as simple, low cost, and highly sensitive biological and chemical sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号