首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
多失效模式机械系统可靠性稳健设计方法研究   总被引:1,自引:1,他引:1       下载免费PDF全文
将机械系统可靠性设计理论和稳健设计方法相结合,讨论了多失效模式机械系统可靠性稳健设计问题,提出了多失效模式机械系统可靠性稳健设计的计算方法.把可靠性灵敏度融入可靠性优化设计模型之中,将机械系统可靠性稳健设计归结为满足可靠性要求的多目标优化问题.在基本随机参数的前二阶矩已知的情况下,可以迅速准确地得到机械系统可靠性稳健设计信息.  相似文献   

2.
Amin Toghi Eshghi 《工程优选》2013,45(12):2011-2029
Reliability-based design optimization (RBDO) requires the evaluation of probabilistic constraints (or reliability), which can be very time consuming. Therefore, a practical solution for efficient reliability analysis is needed. The response surface method (RSM) and dimension reduction (DR) are two well-known approximation methods that construct the probabilistic limit state functions for reliability analysis. This article proposes a new RSM-based approximation approach, named the adaptive improved response surface method (AIRSM), which uses the moving least-squares method in conjunction with a new weight function. AIRSM is tested with two simplified designs of experiments: saturated design and central composite design. Its performance on reliability analysis is compared with DR in terms of efficiency and accuracy in multiple RBDO test problems.  相似文献   

3.
To decrease random parameters’ influence on the drum brake reliability, the reliability-based robust optimization design (RBROD) of the electric vehicle brake is proposed. Based on the assumption that the maximum temperature of the brake cannot exceed the allowable temperature, a performance function model of thermal–mechanical coupling reliability of drum brakes is established by the adaptive Kriging method, and the analysis of reliability sensitivity and RBROD are conducted. The accuracy of the proposed model is verified by temperature measurement experiment under emergency braking condition. The robust optimization design improves the drum brake reliability to 0.99998 and reduce the influence of the design parameters on the reliability, with the absolute values of the reliability sensitivity and the weight of the drum brake are significantly smaller. Therefore, the objectives of reliability design, robustness design, and optimization design are simultaneously achieved by the proposed methods. Besides, the relative error of the proposed method is 0.373%, the number of function evaluations is 39, and the comparison with four meta-model methods show that the proposed method holds high-accuracy and high-efficiency. This study provides a high-precision theoretical explanation for the robust optimization design of drum brake.  相似文献   

4.
The application of design-point-based reliability-based design optimization (RBDO) methods is hindered by the challenge of multiple-design-point problems. In this article, to improve the commonality of design-point-based RBDO methods, a novel multiple-design-point (MDP) approach is developed. The MDP approach uses the trace of the design points from consequent reliability analysis iterations to identify whether there are multiple design points, then all of the design points are used to calculate shifting vectors for the sequential optimization and reliability assessment method, and the corresponding probabilistic constraints are moved to the feasible region along these multiple shifting vectors at the same time. With multiple shifted probabilistic constraints, the design feasibility associated with this probabilistic constraint will be satisfied. Two mathematical examples, a speed reducer design and a honeycomb crashworthiness design, are presented to validate the effectiveness of the MDP method. The results show that the MDP approach is effective for handling multiple-design-point problems.  相似文献   

5.
The reliability index approach (RIA) is one of the effective tools for solving the reliability-based design optimization (RBDO) probabilistic model, which models the uncertainties with probability constraints. However, its wide application in engineering is limited due to low efficiency and convergence problems. The RIA-based modified reliability index approach (MRIA) appears to be very robust and accurate than RIA but yields inefficient for the most probable point (MPP) search with highly nonlinear probabilistic constraints. In this study, an enhanced modified reliability index approach (EMRIA) is developed to improve the efficiency and robustness of searching for MPP and is utilized for RBDO. In the EMRIA, an innovative active set using rigorous inequality is applied to construct the region of exploring for MPP, where the unnecessary probabilistic constraint could be eliminated adaptively during the iterative process. Moreover, the double loop strategy (DLS) is integrated into the EMRIA to strengthen the efficiency and robustness of large-scale RBDO problems. Two numerical examples demonstrated that the EMRIA is an efficient and robust method for MPP search in comparison with current first-order reliability methods. Six RBDO problems quoted also indicate that DLS-based EMRIA has good performance to solve complex RBDO problems.  相似文献   

6.
It is nowadays widely acknowledged that optimal structural design should be robust with respect to the uncertainties in loads and material parameters. However, there are several alternatives to consider such uncertainties in structural optimization problems. This paper presents a comprehensive comparison between the results of three different approaches to topology optimization under uncertain loading, considering stress constraints: (1) the robust formulation, which requires only the mean and standard deviation of stresses at each element; (2) the reliability-based formulation, which imposes a reliability constraint on computed stresses; (3) the non-probabilistic formulation, which considers a worst-case scenario for the stresses caused by uncertain loads. The information required by each method, regarding the uncertain loads, and the uncertainty propagation approach used in each case is quite different. The robust formulation requires only mean and standard deviation of uncertain loads; stresses are computed via a first-order perturbation approach. The reliability-based formulation requires full probability distributions of random loads, reliability constraints are computed via a first-order performance measure approach. The non-probabilistic formulation is applicable for bounded uncertain loads; only lower and upper bounds are used, and worst-case stresses are computed via a nested optimization with anti-optimization. The three approaches are quite different in the handling of uncertainties; however, the basic topology optimization framework is the same: the traditional density approach is employed for material parameterization, while the augmented Lagrangian method is employed to solve the resulting problem, in order to handle the large number of stress constraints. Results are computed for two reference problems: similarities and differences between optimized topologies obtained with the three formulations are exploited and discussed.  相似文献   

7.
将可靠性优化设计理论与可靠性灵敏度分析方法相结合,讨论了机械零部件稳健优化设计的问题.系统地推导了基于鞍点逼近的可靠性灵敏度公式,并把可靠性灵敏度计算结果融入可靠性稳健优化设计模型之中,将可靠性稳健优化设计归结为满足可靠性要求的多目标优化问题.在基本随机参数概率分布已知的前提下,应用鞍点逼近技术,得到极限状态函数的分布函数与概率密度函数,并且将此结果应用到机械零部件的可靠性灵敏度分析中,进而实现了机械零部件的可靠性稳健优化设计.通过与Monte-Carlo方法计算所得的结果相比可知,应用鞍点逼近技术可以迅速、准确地得到机械零部件可靠性稳健设计信息.  相似文献   

8.
A method to aid robust design in the presence of design parameter uncertainty is described. For a given relationship between a performance measure (or output parameter) and the uncertain design parameters a probabilistic simulation is used to obtain the variance of the performance measure as a function of the nominal design parameter values. The optimum values of the latter are then obtained as those corresponding to a minimum of the computed variance, determined by means of a particular non-linear optimization algorithm in the presence of constraints. The latter are in the form of limits on the nominal values of the design parameters and a specified value for the performance measure at the nominal design point, i.e. the deterministic design target. Some problems inherent in this type of procedure are discussed and methods of solution are described. A specific example is studied and the results from the present method are compared with those previously obtained by use of another procedure. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
It is recognized that fracture and wrinkling in sheet metal forming can be eliminated via an appropriate drawbead design. Although deterministic multiobjective optimization algorithms and finite element analysis (FEA) have been applied in this respect to improve formability and shorten design cycle, the design could become less meaningful or even unacceptable when considering practical variation in design variables and noises of system parameters. To tackle this problem, we present a multiobjective robust optimization methodology to address the effects of parametric uncertainties on drawbead design, where the six sigma principle is adopted to measure the variations, a dual response surface method is used to construct surrogate model and a multiobjective particle swarm optimization is developed to generate robust Pareto solutions. In this paper, the procedure of drawbead design is divided into two stages: firstly, equivalent drawbead restraining forces (DBRF) are obtained by developing a multiobjective robust particle swarm optimization, and secondly the DBRF model is integrated into a single-objective particle swarm optimization (PSO) to optimize geometric parameters of drawbead. The optimal design showed a good agreement with the physical drawbead geometry and remarkably improve the formability and robust. Thus, the presented method provides an effective solution to geometric design of drawbead for improving product quality.  相似文献   

10.
There are various methods for performing tolerancing and robust design within a computer-aided design (CAD) framework. Recent work on fitting statistical emulators to CAD systems can be used to facilitate fast optimization geared towards robustness against input variation. After discussing available methods for tolerancing within a common framework, a comprehensive strategy for robust design is developed which involves a combination of circuit simulation, emulation and global optimization.  相似文献   

11.
 提出一种基于灵敏度的多目标鲁棒优化方法。针对各维设计变量存在扰动的情况,在原约束多目标优化模型上,附加偏差目标函数,并采用最差估计法对约束条件进行鲁棒可行性调整。采用全局敏度方程方法来计算目标函数和约束函数对设计变量的敏度,进而采用Pareto遗传算法搜索约束多目标优化问题的非劣解集,设计者可以根据不同的设计准则从中选择合适的设计点。将上述方法用于飞机总体参数优化设计,并与采用常规优化方法所得的优化结果进行了分析和比较。  相似文献   

12.
This paper addresses the challenge of design optimization under uncertainty when the designer only has limited data to characterize uncertain variables. We demonstrate that the error incurred when estimating a probability distribution from limited data affects the out-of-sample performance (ie, performance under the true distribution) of optimized designs. We demonstrate how this can be mitigated by reformulating the engineering design problem as a distributionally robust optimization (DRO) problem. We present computationally efficient algorithms for solving the resulting DRO problem. The performance of the DRO approach is explored in a practical setting by applying it to an acoustic horn design problem. The DRO approach is compared against traditional approaches to optimization under uncertainty, namely, sample-average approximation and multiobjective optimization incorporating a risk reduction objective. In contrast with the multiobjective approach, the proposed DRO approach does not use an explicit risk reduction objective but rather specifies a so-called ambiguity set of possible distributions and optimizes against the worst-case distribution in this set. Our results show that the DRO designs, in some cases, significantly outperform those designs found using the sample-average or the multiobjective approach.  相似文献   

13.
Design and optimization of gear transmissions have been intensively studied, but surprisingly the robustness of the resulting optimal design to uncertain loads has never been considered. Active Robust (AR) optimization is a methodology to design products that attain robustness to uncertain or changing environmental conditions through adaptation. In this study the AR methodology is utilized to optimize the number of transmissions, as well as their gearing ratios, for an uncertain load demand. The problem is formulated as a bi-objective optimization problem where the objectives are to satisfy the load demand in the most energy efficient manner and to minimize production cost. The results show that this approach can find a set of robust designs, revealing a trade-off between energy efficiency and production cost. This can serve as a useful decision-making tool for the gearbox design process, as well as for other applications.  相似文献   

14.
 在贝叶斯统计理论和结构可靠性优化设计方法的基础上,研究了结构在小样本情况下考虑可靠度可信区间的结构可靠性优化设计问题.将结构可靠度作为随机变量,根据先验信息和样本信息,采用贝叶斯推断技术获得结构可靠度的概率分布,给出了可靠度的点估计及区间估计.建立了考虑可靠度可信区间的结构可靠性优化设计模型,提出了考虑可靠度可信区间的结构可靠性优化设计方法.所提出的方法为解决小样本情况下的结构可靠性优化设计问题提供了新的解决方案.数值算例验证了所提出的结构可靠性优化设计方法的有效性和正确性.  相似文献   

15.
Reliability-based robust design optimization (RBRDO) is a crucial tool for life-cycle quality improvement. Gaussian process (GP) model is an effective alternative modeling technique that is widely used in robust parameter design. However, there are few studies to deal with reliability-based design problems by using GP model. This article proposes a novel life-cycle RBRDO approach concerning response uncertainty under the framework of GP modeling technique. First, the hyperparameters of GP model are estimated by using the Gibbs sampling procedure. Second, the expected partial derivative expression is derived based on GP modeling technique. Moreover, a novel failure risk cost function is constructed to assess the life-cycle reliability. Then, the quality loss function and confidence interval are constructed by simulated outputs to evaluate the robustness of optimal settings and response uncertainty, respectively. Finally, an optimization model integrating failure risk cost function, quality loss function, and confidence interval analysis approach is constructed to find reasonable optimal input settings. Two case studies are given to illustrate the performance of the proposed approach. The results show that the proposed approach can make better trade-offs between the quality characteristics and reliability requirements by considering response uncertainty.  相似文献   

16.
This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.  相似文献   

17.
《工程优选》2012,44(1):1-21
ABSTRACT

Probabilistic and non-probabilistic methods have been proposed to deal with design problems under uncertainties. Reliability-based design and robust design are probabilistic strategies traditionally used for this purpose. In the present contribution, reliability-based robust design optimization (RBRDO) is formulated as a multi-objective problem considering the interaction of both approaches. The proposed methodology is based on the differential evolution algorithm associated with two strategies to deal with reliability and robustness, respectively, namely inverse reliability analysis and the effective mean concept. This multi-objective optimization problem considers the maximization of reliability and robustness coefficients as additional objective functions. The effectiveness of the methodology is illustrated by two classical test cases and a rotor-dynamics application. The results demonstrate that the proposed methodology is an alternative method to solve RBRDO problems.  相似文献   

18.
This paper presents a mixed integer programming (MIP) formulation for robust topology optimization of trusses subjected to the stress constraints under the uncertain load. A design‐dependent uncertainty model of the external load is proposed for dealing with the variation of truss topology in the course of optimization. For a truss with the discrete member cross‐sectional areas, it is shown that the robust topology optimization problem can be reduced to an MIP problem, which is solved globally. Numerical examples illustrate that the robust optimal topology of a truss depends on the magnitude of uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
 应用具有任意分布参数机械零件可靠性稳健设计的理论方法,对具有任意分布参数机械典型轴系零件如半轴、前轴和后桥进行了可靠性稳健设计,给出了计算仿真分析结果,对工程实际的机械零件的可靠性稳健设计提供了理论依据。  相似文献   

20.
 应用具有任意分布参数机械零件可靠性稳健设计的理论方法,对具有任意分布参数机械典型弹簧系零件如扭杆弹簧和螺旋弹簧,进行了可靠性稳健设计,给出了计算仿真分析结果,对工程实际的机械零件的可靠性稳健设计提供了理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号