首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a ductile fracture model has been employed to predict the failure of tensile specimen using coupled finite element–element free Galerkin (FE–EFG) approach. The fracture strain as a function of stress triaxiality has been evaluated by analyzing the notched tensile specimens. In the coupled approach, a small portion of the domain, where severe plastic deformation is expected, is modeled by EFG method whereas the rest of the domain is modeled by FEM to exploit the advantages of both the methods. A ramp function has been used in the interface region to maintain the continuity between FE and EFG domains. The nonlinear material behavior is modeled by von-Mises yield criterion and Hollomon’s power law. An implicit return mapping algorithm is employed for stress equilibrium in the plasticity model. The effect of geometric nonlinearity as a result of large deformation is captured by updated Lagrangian approach. The coupled approach is used to study the fracture behavior of two different cracked specimens in order to highlight its capabilities.  相似文献   

2.
J. Kovach  B. R. Cho 《工程优选》2013,45(9):805-819
Robust design is an efficient process improvement methodology that combines experimentation with optimization to create systems that are tolerant to uncontrollable variation. Most traditional robust design models, however, consider only a single quality characteristic, yet customers judge products simultaneously on a variety of scales. Additionally, it is often the case that these quality characteristics are not of the same type. To addresses these issues, a new robust design optimization model is proposed to solve design problems involving multiple responses of several different types. In this new approach, noise factors are incorporated into the robust design model using a combined array design, and the results of the experiment are optimized using a new approach that is formulated as a nonlinear goal programming problem. The results obtained from the proposed methodology are compared with those of other robust design methods in order to examine the trade-offs between meeting the objectives associated with different optimization approaches.  相似文献   

3.
Many atomistic–continuum coupling techniques employ an overlapping subdomain to suppress spurious wave reflections. In this paper, we propose the imposition of a new damping condition on the overlapping subdomain to enhance the capability of such methods in eliminating spurious wave reflections. In this technique, the total displacements of the atoms in the overlapping subdomain are decomposed into fine and coarse scales. The fine scale displacements represent the oscillations which cannot be resolved by the continuum mesh and must be eliminated to avoid the artificial reflections. This is achieved by modifying the equations of motion of the fine scale displacements to include a damping term. The flexibility of the proposed technique is verified by applying it to the bridging scale method and bridging domain method. Numerical simulations of one- and two-dimensional problems demonstrate the effectiveness of the technique in enhancing the elimination of the spurious wave reflections in coupled atomistic–continuum techniques.  相似文献   

4.
This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.  相似文献   

5.
The optimum combination of experimental variable, temperature, time of heat treatment under nitrogen atmosphere and amount of Ni-salt was delineated to find out the maximum yield of nanophase Ni in the silica gel matrix. The size of Ni in the silica gel was found to be 34 and 45 nm for the two chosen compositions, respectively. A statistically adequate regression equation, within 95% confidence limit was developed by carrying out a set of active experiments within the framework of design of experiment. The regression equation is found to indicate the beneficial role of temperature and time of heat treatment.  相似文献   

6.
Aqueous sol–gel processing was used to synthesize neodymium-doped magnesium hexaaluminate (La1?x Nd x MgAl11O19; x = 0, 0.3, 0.4, 0.5) ceramic powder and subsequently calcined at 1450 and 1600 °C for 2 h. Randomly grown platelets of lanthanum–magnesium hexaaluminate formed a porous interlocking structure. Presence of various percentages of neodymium oxide significantly modifies the porous interlocking microstructure into self-reinforced, card-house-like microstructure. Platelets of rare earth-rich magnesium hexaaluminate were grown preferentially more than the stoichiometric rare earth magnesium hexaaluminate at elevated temperature greater than 1450 °C. Rare earth-rich magnesium hexaaluminate platelets form the skeleton of a card-house structure and the tiny platelets of stoichiometric rare earth magnesium hexaaluminate fill the house. The specific heat capacities, micro-hardness, and fracture toughness were studied in details.  相似文献   

7.
Dengfeng Wang 《工程优选》2018,50(4):615-633
This article presents a hybrid method combining a modified non-dominated sorting genetic algorithm (MNSGA-II) with grey relational analysis (GRA) to improve the static–dynamic performance of a body-in-white (BIW). First, an implicit parametric model of the BIW was built using SFE-CONCEPT software, and then the validity of the implicit parametric model was verified by physical testing. Eight shape design variables were defined for BIW beam structures based on the implicit parametric technology. Subsequently, MNSGA-II was used to determine the optimal combination of the design parameters that can improve the bending stiffness, torsion stiffness and low-order natural frequencies of the BIW without considerable increase in the mass. A set of non-dominated solutions was then obtained in the multi-objective optimization design. Finally, the grey entropy theory and GRA were applied to rank all non-dominated solutions from best to worst to determine the best trade-off solution. The comparison between the GRA and the technique for order of preference by similarity to ideal solution (TOPSIS) illustrated the reliability and rationality of GRA. Moreover, the effectiveness of the hybrid method was verified by the optimal results such that the bending stiffness, torsion stiffness, first order bending and first order torsion natural frequency were improved by 5.46%, 9.30%, 7.32% and 5.73%, respectively, with the mass of the BIW increasing by 1.30%.  相似文献   

8.
Wang  Haitao  Zhang  Yunpeng  Xue  Fengxin  Bai  Wenxia  Shi  Xueting  Liu  Yanhua  Feng  Libang 《Journal of Materials Science》2021,56(21):12183-12197
Journal of Materials Science - Nowadays, it has become an imminent challenge of developing a robust and efficient oil/organic solvent absorbing/releasing along with oil–water separating...  相似文献   

9.
International Journal of Mechanics and Materials in Design - In light of the bending–twisting coupled composite structure, the structural geometric parameters are considered as variables in...  相似文献   

10.
Wood samples (Picea jezoensis Carr.) were treated with solutions of aqueous NaOH (0–0.20 concentration fraction) and each treated samples evaluated by dynamic mechanical analyses (DMA). NaOH treatment was shown to affect the interactions between microfibrils and the surrounding matrix and, in particular, the dynamics of methylol groups in the microfibrils. The former is not dependent on the degree of crystallization but rather on the eluviation of the matrix. The latter depends on the degree of crystallization. Alkali treatment induces changes in the polymer domains as a result of matrix eluviation. This decreases the dynamics of methylol groups at NaOH concentrations less than 0.11. On the other hand, alkali treatment causes non-crystallization at concentrations greater than 0.11, which quantitatively increases the flexibility of methylol groups. Crystallinity decreased, and main-chain dynamics increased, following treatment with highly concentrated NaOH solutions. The dynamics of lignin also increased due to weakened interactions with microfibrils due to non-crystallization.  相似文献   

11.
Gold nanoparticles are exciting materials because of their potential applications in optics, electronics, biomedical, and pharmaceutical fields. In recent years, environmentally friendly, low-cost biosynthesis methods with bio-applicable features have continued to be developed for the synthesis of gold nanoparticles. In the present study, an actinobacterial strain was isolated from the Petrosia ficiformis (Poiret 1798) sponge, which was collected from a marine environment, and the gold nanoparticle synthesis was performed for the first time from the bacteria type belonging to the Citricoccus genus. The synthesis conditions were optimized using the Box–Behnken experimental design, with a statistical method that included three independent variables (temperature, time, and mixture ratio) to affect the synthesis at three levels (+1, 0, and ?1). Accordingly, the conditions proposed for the biosynthesis of gold nanoparticles at the maximum optical density values that are specific for the Citricoccus sp. K1D109 strain were estimated as 35°C temperature, 24?h, and 1/5 mixture ratio (cell-free extract/HAuCl4?·?3H2O). When recommended conditions were applied, it was determined that the maximum absorbance of the synthesized gold nanoparticles is 1.258 at 545?nm, and their sizes are in the range of 25–65?nm, according to transmission electron microscopy (TEM) data.  相似文献   

12.
The microstructure, mechanical properties, and wear behavior of two key components of a hinge fabricated from a metal injection molding process that was then sintered and heat treated under various conditions were analyzed using an optical microscope, a pin-on-disk tester, an open-closed reciprocal wear tester, and a scanning electron microscope. Optical photomicrograph revealed a serious decarburization in the sintered component, suggesting that an increase in carbon content would be necessary to improve mechanical properties. At the initial stage of the open-closed reciprocal wear test, the obverse inclined planes of both components exhibited plastic deformation and depression. As the number of test cycles increased, an increase in cold welding, metal adhesion, spalling, delamination, and surface fatigue was observed, triggering a decrease in metal thickness, which in turn altered the shape of the components. In this study, the optimal parameters to satisfy commercial application requirements were obtained when the components were carburized at 870 °C for 30 min, quenched in oil, and finally tempered at 250 °C for 1 h.  相似文献   

13.
This study firstly establishes the toxicity assessment of three-component Fe–Cr–Ni biomedical materials using Probit dose–response model and augmented simplex design. The individually determined toxicity rankings of these three cations is in the order Ni2+  Cr3+ > Fe3+. The ternary Fe–Cr–Ni system's EC50 contour plot shows a hump with EC50 = 897.5 mg/L, and a saddle with EC50 = 637.5 mg/L. Ternary Fe–Cr–Ni biomedical implants may possess good biocompatibility when the chemical compositions of selectively leached metal ions approach the hump region, but present at increased toxic risk when close to the saddle region. Toxicity of Fe–Cr–Ni three-component biomedical materials with various chemical compositions can be predicted and verified economically and efficiently using an augmented simplex design.  相似文献   

14.
In this work, we report on the synthesis of hybrid Au–ZnO nanoparticles using a one-pot chemical method that makes use of 1,3-propanediol as a solvent, a reducing agent and a stabilizing layer. The produced nanoparticles consisted of Au cores decorated with ZnO nanoparticles. The structure and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX) and Raman spectroscopy. Optical extinction measurements, combined with numerical simulations, showed that the Au–ZnO nanoparticles exhibit a localized surface plasmon resonance (SPR) clearly red-shifted with respect to that of bare Au nanoparticles (AuNPs). This work contributes to the emergence of multi-functional nanomaterials with possible applications in surface plasmon resonance based biosensors, energy-conversion devices, and in water-splitting hydrogen production.  相似文献   

15.
The development and production of technical products take place under hard competitive conditions. Minimization of development time, an increase in product quality and reduction of manufacturing costs are crucial factors for success in the automotive industry. To meet these requirements, current trends in car body development and production such as parametric-associative modelling and knowledge integration offer particularly high potentials. And it is feature technology that plays a key role as a structuring method and integration component. DaimlerChrysler AG has implemented a concept based on intelligent features that provides procedures to assist engineers in designing components and assemblies that are to be inspected, thus supplying the foundation necessary to automate the inspection process that otherwise would have to be done manually. This paper discusses the requirements, solution principles and realization perspectives of a revised information technology that can support design and inspection process planning activities and improve change management.  相似文献   

16.
Journal of Materials Science: Materials in Electronics - 0.95(Li0.02Na0.50K0.48)(Nb0.95Sb0.05)O3–0.05AgTaO3@BaZrO3 (LNKNbSAT@BZ) lead-free ceramics were prepared via a sol–gel...  相似文献   

17.
In this paper, strength of the interphase between silica and glycidoxypropyltrimethoxy silane (GPS) coupling agent has been studied using molecular dynamics (MD) simulations. Silica–GPS interphase model is created by coupling the hydroxylated silica surface with monolayer-hydroxylated GPS molecules. The interphase model is subjected to mode-I (normal), mode-II (shear) and mixed-mode (normal–shear) mechanical loading to determine the interphase cohesive traction–separation (T–S) response (i.e., cohesive traction law). In MD simulations, atomic interactions are modeled with the reactive force field ReaxFF. Effects of interphase thickness and GPS bond density on the T–S response are studied. Simulation results indicate that interphase strength decreases with increase in the interphase thickness before attaining a plateau level at higher thickness. For a particular thickness, strength improves significantly with increase in the GPS bond density with the silica surface. Damage mode is adhesive at the silica interface at lower thickness and transitions to mixed mode and cohesive failure within the silane interphase at higher thickness. Mixed-mode T–S responses are bounded by the mode-I and mode-II responses. Characteristic parameters of the continuum-level potential-based cohesive zone model (PPR–CZM) are determined by fitting the MD-based mode-I and mode-II T–S responses with PPR–CZM functional. Development of the PPR–CZM parameters enables bridging length scales from the MD to the continuum scale for fracture modeling of the fiber–matrix interphase in composites subjected to mixed-mode loading. Results on mode-I and mode-II unloading are also presented.  相似文献   

18.
Aseptic loosening is one of the main reasons for the revision of a total knee replacement (TKR). The design of the key component of a TKR, the femoral component, is particularly problematic because its failure can be the result of different causes. This makes the development of new biomaterials for use in the femoral component a challenging task. This paper focuses on the engineering design aspects in order to understand the limitations of current materials and design deficiencies. The paper describes the introduction of a new biomaterial for a femoral component and justifies the recommendation to use multi-functional materials as a possible solution to aseptic loosening. The potential advantages of applying functionally graded biomaterials (FGBMs) in prosthetic femur are explained by reducing the leading causes of failure including wear, micro-motion and stress-shielding effect. The ideas presented in this paper can be used as the basis for further research on the feasibility and advantages of applying FGBM in other superior implant designs.  相似文献   

19.
This study was carried out to investigate the parametric influence on the performance of drilling newly made sandwich composites. Sandwich composite was prepared by using steel and jute as reinforcements and polyester as the matrix material. Drilling experiments were carried out by considering input factors such as spindle speed, feed rate of the spindle, point angle of the drill and tool diameter. Three output factors, namely thrust force developed during drilling, surface roughness of the drilled hole and damage at the entrance surface, were studied. All output factors were optimized by using the Box–Behnken approach, and the best machining conditions were taken on the basis of the desirability approach. Confirmatory experiments were conducted and compared against the Box–Behnken model. The comparison showed only a minor error, and hence the optimization is satisfactory.  相似文献   

20.
Objective: To design and develop liquid and solid self-nanoemulsifying drug delivery systems (SNEDDS and S-SNEDDS) of felodipine (FLD) using Box–Behnken design (BBD).

Methods: Solubility study was carried out in various vehicles. Ternary phase diagram was constructed to delineate the boundaries of the nanoemulsion domain. The content of formulation variables, X1 (Acconon E), X2 (Cremophor EL) and X3 (Lutrol E300) were optimized by assessment of 15 formulations (as per BBD) for mean globule sizes in Millipore water (Y1), 0.1?N?HCl (Y2), phosphate buffer (pH 6.4) (Y3); emulsification time (Y4) and T85% (Y5). The responses (Y1–Y5) were evaluated statistically by analysis of variance and response surface plots to obtain optimum points. The optimized formulations were solidified by adsorption to solid carrier technique using Aerosil 200 (AER).

Results and discussion: Transmission electron microscopy images confirmed the spherical shape of globules with the size range concordant with the globule size analysis by dynamic light scattering technique (<60?nm). The surface morphology of S-SNEDDS (before release) by scanning electron microscopy and atomic force microscopy indicated that SNEDDS are adsorbed uniformly on the surface of AER. The dried residue of S-SNEDDS (after release) revealed the presence of nanometric pores vacated by the previously adsorbed SNEDDS onto AER. Differential scanning calorimetry and X-ray powder diffraction studies illustrated the change of FLD from crystalline to amorphous state.

Conclusion: This study indicates that owing to nanosize, SNEDDS and S-SNEDDS of FLD have potential to enhance its absorption and may serve an efficient oral delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号