首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many well-established models can be applied to calculate the filtration efficiencies. In these models the filtration velocity and challenging particle size are assumed to be known accurately. However, in realistic filtration tests, the filtration velocity has profiles dependent on the filter holder geometry and experimental conditions; the challenging particles have size distributions dependent on the instruments and operation conditions. These factors can potentially affect the measured filtration efficiency and lead to discrepancies with the models.

This study aims to develop an integrative model to predict the filtration efficiencies in realistic tests by incorporating the effects of the filtration velocity profile and challenging particle size distribution classified by a differential mobility analyzer (DMA) into the existing filtration models. Face velocity profile is modeled with fluid mechanics simulations; the initial generated particle size distribution, the particle charging status and the DMA transfer function are modeled to obtain the challenging particle size distribution. These results are then fed into the filtration models. Simulated results are compared with experimental ones to verify the model accuracy. This model can be used to reduce filtration test artifacts and to improve the experimental procedure.

The results reveal that the face velocity upstream the filter exhibits high degree of homogeneity not affecting the filtration efficiency if the filter pressure drop is not very low. The generated particle size distribution and the DMA selection size window could influence the challenging particle size distribution and therefore the measured filtration efficiency.

Copyright © 2017 American Association for Aerosol Research  相似文献   


2.
MonteCarlo simulations of diffusive particle trajectories, as well as Stolzenburg's model calculations, have shown that the mean mobility of the particles classified by a differential mobility analyzer (DMA) at a given applied voltage may differ from the theoretical one inferred from the Knutson–Whitby equation if the particles are withdrawn from the tails of the particle mobility distribution. In this case, the true mean mobility, defined as the mean mobility of the particles classified at the specified voltage, can be precisely measured by a second DMA operating in series with the first one (tandem DMA). However, if particles are extracted from the central part of the distribution, their mobility can be correctly measured with a single DMA. Besides showing the importance of the usage of the tandem DMA technique for accurate measurements of mobility, this article provides an analytical expression which, if the mobility distribution of the polydisperse aerosol fed to the DMA is known, allows an accurate estimation of the true (mean) mobility of the classified particles.

Copyright 2014 American Association for Aerosol Research  相似文献   


3.
A novel high-resolution planar and portable differential mobility analyzer (DMA) has been designed and built (Nano-ID® PMC500, Naneum, Canterbury, UK). Finite element multi-physics numerical modeling was employed to optimize the geometry of the DMA and to find a regime for high resolution within the confines of a portable instrument. The numerical approach for solving the Navier–Stokes equation was verified by comparison of calculated data to experimental values. The PMC500 was calibrated and tested with different monodisperse aerosol challenges. The PMC500 portable DMA is shown to have good sizing accuracy and resolution, similar in performance to commercially available desktop instruments.

Copyright 2014 American Association for Aerosol Research  相似文献   


4.
An existing differential mobility analyzer (DMA) of cylindrical electrodes and a novel DMA of rectangular plate electrodes are demonstrated for size fractionation of nanoparticles at high-aerosol flow rates in this work. The two DMAs are capable of delivering monodisperse size selected nanoparticles (SMPS σg < 1.1) at gas flow rates ranging from 200 slm to 500 slm. At an aerosol flow rate of 200 slm, the maximum attainable particle mean size is of about 20 nm for the cylindrical DMA and of nearly 50 nm for the rectangular plate DMA. The number concentration of the monodisperse nanoparticles delivered by the high-flow DMAs spans from 104 cm?3 to 106 cm?3 depending upon the particle mean size and particle size dispersion.

Copyright 2014 American Association for Aerosol Research  相似文献   


5.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range is developed. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. By measuring particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobility analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. However, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.

Copyright © 2017 American Association for Aerosol Research  相似文献   


6.
Measurement systems for particle sizing starting at 1 nm are used to bridge the gap between mass spectrometer measurements and traditional aerosol sizing methods, and thus to enable measurement of the complete size distribution from molecules and clusters to large particles. Such a measurement can be made using a scanning mobility particle sizer equipped with a diethylene glycol growth engine (e.g., TSI Model 3777 Nano Enhancer) along with a condensation particle counter, and a differential mobility analyzer (DMA) appropriate for such small sizes. Previous researchers have used high-resolution DMA (HRDMA) and also the TSI Nano-DMA (Model 3085) in such a scanning mobility particle sizer system. In this study, we evaluate the performance of the recently introduced TSI 1 nm-DMA (Model 3086). The transfer function was characterized using 1–2 nm monomobile molecular ion standards. The same measurements were repeated on a TSI Nano-DMA, with good agreement to previously published values. From the measured transfer function, the resolution of each DMA model was determined as a function of particle size and sheath flow rate. Resolution of the TSI 3086 in the 1–2 nm range was 10–25% higher than the TSI 3085. Measured resolutions of the TSI 3086 were 10–20% lower than theoretically predicted values, whereas those of the Model 3085 were 0–10% lower.

Copyright © 2018 TSI Inc.  相似文献   


7.
A new instrument, density monitor (DENSMO), for aerosol particle size distribution characterization and monitoring has been developed. DENSMO is operationally simple and capable of measuring the effective density as well as the aerodynamic and the mobility median diameters with a time resolution of 1 s, from unimodal particle size distributions. The characterization is performed with a zeroth order mobility analyzer in series with a low pressure impactor and a filter stage. The operation of DENSMO was investigated with sensitivity analysis and, based on the results, optimal operation parameters were determined. DENSMO was also compared, in lab test measurements, against a reference method with several particle materials with bulk densities from 0.92 to 10.5 g/cm3. The results show that the deviation from the reference method was less than 25% for suitable materials.

Copyright © 2016 American Association for Aerosol Research  相似文献   


8.
The Pegasor PPS-M sensor is an electrical aerosol sensor based on diffusion charging and current measurement without particle collection. In this study, the role and effect of each component in the instrument is discussed shortly and the results from a thorough calibration measurements are presented. A comprehensive response model for the operation of the PPS-M sensor was developed based on the calibration results and computational fluid dynamics (CFD) modeling results. The obtained response model, covering the effects of the particle charger, the mobility analyzer, and both diffusion and inertial losses, was tested in the laboratory measurements with polydisperse test aerosols, where a good correlation between the model and the measured results was found.

Copyright 2014 American Association for Aerosol Research  相似文献   


9.
Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20 nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1–1.3 for a 2 nm particle and DMA gas-phase mixing ratios between 3.5 and 80 pptv. These ratios agree well with observations by an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer. Simulations with MABNAG, direct observations of the composition of clusters <2 nm, and indirect observations of the particle composition indicate that the acidity of the nucleated particles decreases as they grow from ~1 to 20 nm. However, MABNAG predicts less acidic particles than suggested by the indirect estimates at 10 nm diameter using the nano-HTDMA measurements, and less acidic particles than observed by a thermal desorption chemical ionization mass spectrometer (TDCIMS) at 10–30 nm. Possible explanations for these discrepancies are discussed.

Copyright © 2016 American Association for Aerosol Research  相似文献   


10.
A hygroscopic tandem differential mobility analyzer (H-TDMA) and a hygroscopic coupled DMA and aerosol particle mass (H-DMA-APM) were coupled to examine aqueous film formation and the deliquescence behavior of inorganic nanoparticles. The two systems complement each other because H-DMA-APM measures mass change, while H-TDMA measures mobility diameter (volume) change of nanoparticles upon water uptake. The former mass change was, in particular, more capable to discern minute particle phase changes than the latter size change at moderate RHs. The mass and diameter changes were used to derive the particle effective density for evaluation of aqueous film formation on the nanoparticle surface before and after deliquescence transition. The measurements further showed that approximately 3–5 and 12–20 monolayer equivalents of water molecules formed on the respective surface of 50- and 100-nm inorganic aerosols (ammonium sulfate and sodium chloride) before deliquescence relative humidity (DRH). These findings support the physical basis of the coated-surface model given by Russell and Ming in 2002, and suggest that the phase transition of inorganic nanoparticles near deliquescence is a gradual process instead of an abrupt change. This phenomenon changed the surface energy values, thus confirming the explanation that the DRH of nanoparticles increases as the particle size decreases. This is the first direct observation of nanoparticle deliquescence phase transition using the H-DMA-APM system, and the detailed characterization of aqueous film formation on inorganic nanoparticles is feasible with the presented measurement systems.

© 2016 American Association for Aerosol Research  相似文献   


11.
Aerosol instrument characterization and verification for nanometer-sized particles requires well-established generation and classification instruments. A precise size selection of sub-3-nm charged aerosol particles requires a differential mobility analyzer (DMA), specially designed for the sub-3-nm size range. In this study, a Herrmann-type high-resolution DMA developed at Yale University was characterized in various operation conditions. A relation between sheath flow rate and tetraheptylammonium ion (C28H60N+, THA+, 1.47 nm, mobility equivalent diameter) was established. The maximum particle size that the DMA was able to classify was 2.9 nm with the highest sheath flow rate of 1427 liters per minute (Lpm), and 6.5 nm with the lowest stable sheath flow rate of 215 Lpm, restricted by the maximum and minimum flow rates provided by our blower. Resolution and transmission of DMA are reported for tetrapropylammonium (C12H28N+, TPA+, 1.16 nm), THA+, and THA2Br+ (1.78 nm) ions measured with two different central electrodes and five different sheath flow rates. The transmission varied between 0.01 and 0.22, and the resolution varied between 10.8 and 51.9, depending on the operation conditions.

Copyright © 2016 American Association for Aerosol Research  相似文献   


12.
During occupational exposure studies, the use of conventional scanning mobility particle sizers (SMPS) provides high quality data but may convey transport and application limitations. New instruments aiming to overcome these limitations are being currently developed. The purpose of the present study was to compare the performance of the novel portable NanoScan SMPS TSI 3910 with that of two stationary SMPS instruments and one ultrafine condensation particle counter (UCPC) in a controlled atmosphere and for different particle types and concentrations.

The results show that NanoScan tends to overestimate particle number concentrations with regard to the UCPC, particularly for agglomerated particles (ZnO, spark generated soot and diesel soot particles) with relative differences >20%. The best agreements between the internal reference values and measured number concentrations were obtained when measuring compact and spherical particles (NaCl and DEHS particles). With regard to particle diameter (modal size), results from NanoScan were comparable < [± 20%] to those measured by SMPSs for most of the aerosols measured.

The findings of this study show that mobility particle sizers using unipolar and bipolar charging may be affected differently by particle size, morphologies, particle composition and concentration. While the sizing accuracy of the NanoScan SMPS was mostly within ±25%, it may miscount total particle number concentration by more than 50% (especially for agglomerated particles), thus making it unsuitable for occupational exposure assessments where high degree of accuracy is required (e.g., in tier 3). However, can be a useful instrument to obtain an estimate of the aerosol size distribution in indoor and workplace air, e.g., in tier 2.  相似文献   


13.
Understanding the filtration characteristics of fibrous particles is important since those particles have caused health and environmental concerns. Due to the straight morphology of metal nanowires, unlike carbon nanotube (CNT) particles nanowires can be considered as appropriate test material to evaluate existing filtration theory for cylindrical particles. We measured the penetration of silver nanowires in the size range of dm = 200 to 400 nm through screen mesh filter. By using Li et al. (2012)'s theory, we determined the orientation status of silver nanowires inside differential mobility analyzer (DMA) and calculated the dynamic shape factor of nanowires. Theoretical penetration was obtained by using single fiber theory with modified interception parameter including orientation angle between a filter wire and a particle. The orientation angle obtained by fitting experimental data into single fiber theory for the 1 layer of screen mesh filter is found to be close to 40° indicating random orientation of nanowires near filter. However, in the experiments with multi-layers of screen mesh, any tendency related to the orientation angle was not found. We performed numerical simulations for the filtration processes such as impaction, diffusion, interception, and interception of diffusing particles by introducing modified slip correction factor. Overall, when interception of diffusing particles is considered in addition to diffusion and interception, numerically simulation results and theoretical prediction agree better with experimental data regarding the penetration of silver nanowires through the 1 layer of screen mesh filter.

Copyright 2014 American Association for Aerosol Research  相似文献   


14.
Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particle properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility (dm), vacuum aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, the dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (dm < 200 nm) particles is 1.25, while χv of larger particles (dm ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast, χt of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.

© 2016 American Association for Aerosol Research  相似文献   


15.
In this article, a proof of concept of a new measurement instrument, differential diffusion analyzer (DDA), is established. The DDA enables the measurement of the size distribution of sub-10 nm aerosol particles, and it can also be used as a size classifier to separate a certain particle size from a size distribution for subsequent analysis. The developed technique is based on the diffusion separation of different size particles. Thus, the main advantage of the DDA compared to other methods is that particle charging is not required. Simulated and experimentally measured transmission efficiencies show that the diffusion-based differential size classification is a feasible concept, and moreover, shows that particle size is inversely proportional to the square root of the total flow rate.

Copyright © 2017 American Association for Aerosol Research  相似文献   


16.
Two iPhone-sized differential mobility analyzers (DMAs) in the parallel-plate configuration (i.e., mini-plate DMAs) were designed and their performance was calibrated in this study in order to gain the instructive knowledge for the future mini-plate DMA design and to have a well-calibrated mini-plate DMA for the ultrafine particle (UFP) sensor network. The performance of mini-plate DMAs was calibrated using the tandem DMA (TDMA) technique. The experimental transfer functions of prototypes at different particle sizes and under various combinational conditions of aerosol and sheath flow rates were derived from the TDMA data. It is concluded that mini-plate DMAs performed reasonably well for UFP sizing. It was also found that the sizing resolution of mini-plate DMAs is closer to the aerosol-to-sheath flow rate ratio when the percentage of aerosol slit opening in length was increased (relative to the width of aerosol classification zone). A new concept of “effective sheath flow rate” was introduced to better interpret the experimental observation on the area and FWHM (full width at half maximum) data of measured DMA transfer functions. Based on the experimental data, we proposed a modified equation for mini-plate DMAs to better calculate the voltage required to size particles of a given electrical mobility.

Copyright © 2016 American Association for Aerosol Research  相似文献   


17.
We study the effects of electric field strength on the mobility of soot-like fractal aggregates (fractal dimension of 1.78). The probability distribution for the particle orientation is governed by the ratio of the interaction energy between the electric field and the induced dipole in the particle to the energy associated with Brownian forces in the surrounding medium. We use our extended Kirkwood–Riseman method to calculate the friction tensor for aggregates of up to 2000 spheres, with primary sphere sizes in the transition and near-free molecule regimes. Our results for electrical mobility versus field strength are in good agreement with published experimental data for soot, which show an increase in mobility on the order of 8% from random to aligned orientations. Our calculations show that particles become aligned at decreasing field strength as particle size increases because particle polarizability increases with volume. Large aggregates are at least partially aligned at field strengths below 1000 V/cm, though a small change in mobility means that alignment is not an issue in many practical applications. However, improved differential mobility analyzers would be required to take advantage of small changes in mobility to provide shape characterization.

Copyright © 2018 American Association for Aerosol Research  相似文献   


18.
Sampling and dilution of flame-generated, fractal-like ZrO2 aerosols is investigated by aerosol mass/mobility measurements and microscopy. Two broadly used sampler configurations, a straight-tube (ST) and a hole-in-a-tube (HiaT), at three different in-flow orientations and hole diameters are evaluated. The mobility size distributions, mass-mobility exponent, Dfm, prefactor, kfm, and average primary particle diameter are obtained at 10–60 cm height above the burner (HAB) of fuel-rich (hot) and fuel-lean (cold) spray flames by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements using a recent power law for fractal-like particles. The primary particle diameter, agglomerate size distributions, and corresponding standard deviations from aerosol measurements are compared to those by counting images of particles collected by thermophoretic sampling along the flame centerline. Once new particle formation is completed in the flame, both sampler configurations result in nearly identical particle size distributions. Furthermore, all HiaT samplers result in similar mobility size distributions at all orientations, regardless of hole size. Sampling using a downstream in-flow hole orientation results in slightly larger Sauter mean diameters than those obtained by upstream or sidestream ones, especially for the cold flame. Additionally, a correlation is developed by Discrete Element Modeling (DEM) for the agglomerate Dfm evolution to its asymptotic value of 2.2 as function of the average number of primary particles per agglomerate, nva, or the relative particle density with pre-exponential constant kfm = 1.18, regardless of primary particle size. This is in good agreement with an experimentally obtained correlation in terms of relative particle density as well as with experimental data for ZrO2, Ag, and Cu nanoparticles.

© 2016 American Association for Aerosol Research  相似文献   


19.
Aerosol mobility size spectrometers are commonly used to measure size distributions of submicrometer aerosol particles. Commonly used data inversion algorithms for these instruments assume that the measured mobility distribution is broad relative to the DMA transfer function. This article theoretically examines errors that are incurred for input distributions of any width with an emphasis on those with mobility widths comparable to that of the DMA's transfer function. Our analysis is valid in the limit of slow scan rates, and is applicable to the interpretation of measurements such as those obtained with tandem differential mobility analyzers as well as broader distributions. The analysis leads to expressions that show the relationship between the inverted number concentration, mean size, and standard deviation and true values of those parameters. For narrow distributions (e.g., for a mobility distribution produced by a DMA with a 1:10 aerosol:sheath air flow ratio) under typical operating conditions, number concentrations and mean mobility obtained with inversion algorithms are accurate to within 0.5% and 1.0%, respectively. This corresponds to mean diameter retrieval errors of 1.0% for large particles and 0.5% for small (kinetic regime) particles. The widths (i.e., relative mobility variance) of the inverted distributions, however, significantly exceed the true values.

Copyright © 2018 American Association for Aerosol Research  相似文献   


20.
Titanium dioxide (TiO2) is one of the most widely used nanoscale materials to date and could result in human exposures. The main objective of this study was to perform detailed characterization of TiO2 agglomerate particles and how these properties influence particle penetration in a screen filter. Transmission electron microscope (TEM) photos showed compact agglomerates of nanoscale primary particles. The projected area diameter was close to the mobility diameter, where the length was about 25% larger than the mobility diameter. The mean aspect ratio of TiO2 agglomerate was constant between 1.39 and 1.55. Using the tandem differential mobility analyzer-aerosol particles mass analyzer (DMA-APM) technique, we were able to measure aerodynamic diameter, mass, and fractal dimension. The value of fractal dimension based on mass and mobility diameter was 2.8. Penetration of classified TiO2 particles through a screen filter was measured. Penetration increased with increasing mobility diameter and flow rate indicating that diffusion and interception were the main filtration mechanism. The measured physical dimensions, mobility diameter, and aerodynamic diameter were used in a single-fiber filtration theory for the fan model filter to predict the penetration of TiO2 particles. The interception parameter was the key to estimate the penetration. Experimental penetration data were in best agreement with the model in which the maximum length was used to calculate the interception model. This result was consistent with the assumption that the rotation time of a non-spherical particle of small aspect ratio was much less than the transport time for the particle to pass through the filter fiber.

© 2017 American Association for Aerosol Research  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号