首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, two main methods are used to take online measurement of the solids moisture in fluidised bed dryers, namely microwave resonance and near infrared spectroscopy. In this paper, a new online approach to solids moisture measurement of batch fluidised bed dryers by electrical capacitance tomography (ECT) is presented for the first time. Based on online measurement of solids moisture, it is possible to implement feedback control and process optimisation of batch fluidised bed drying processes, aiming to increase the operation efficiency and to improve product quality. A twin-plane ECT sensor with eight electrodes in each plane is mounted in the bottom of a glass fluidisation chamber. From the adjacent electrode pairs, the water content of the solids is estimated based on the correlation between the moisture content and the permittivity value. To reduce measurement error, the effect of temperature on moisture measurement is compensated. The fluidisation velocity is estimated by a semi-empirical function based on the measured water content. The acquired information is sent to a controller to adjust the air flow rate of the fluidised bed dryer. To validate the moisture measurement by ECT, a mathematical model has been developed, based on the measured temperature and relative humidity of the outlet air. The Landweber iteration method is applied to reconstruct images. The averaged solids concentration along the radial direction at different fluidisation conditions is given and compared with results by the linear back-projection (LBP) method. Results from batch drying processes with online measurement and feedback control are given and compared with no feedback control. To compare the operation efficiency, the thermal efficiency is considered and the results show the possibility of online control and optimisation of the fluidised bed drying processes, based on online measurement of solids moisture by ECT. Some challenges and future work are discussed.  相似文献   

2.
流化床反应器过程强化技术   总被引:2,自引:0,他引:2  
Fluidized beds enable good solids mixing, high rates of heat and mass transfer, and large throughputs, but there remain issues related to fluidization quality and scale-up. In this work I review modification techniques for fluidized beds from the perspective of the principles of process intensification (PI), that is, effective bubbling sup-pression and elutriation control. These techniques are further refined into (1) design factors, e.g. modifying the bed configuration, or the application of internal and external forces, and (2) operational factors, including altering the particle properties (e.g. size, density, surface area) and fluidizing gas properties (e.g. density, viscosity, or velocity). As far as two proposed PI principles are concerned, our review suggests that it ought to be possible to gain improve-ments of between 2 and 4 times over conventional fluidized bed designs by the application of these techniques.  相似文献   

3.
It is important to investigate the gas–solids flow characteristics of fluidized bed drying processes to improve the operation efficiency and guarantee the product quality. This paper presents research into fluidized bed drying processes measured by high-frequency differential pressure fluctuation and electrical capacitance tomography (ECT). Power spectra analysis is combined with dynamic calibration for ECT to reveal the complex gas–solids flow behavior. Bubble characteristics are visualized by cross-sectional and quasi-3D ECT images. In addition, results by discrete wavelet transform analysis are given and compared with the analysis results of previous sections. It has been found that bubbles would coalesce in different ways under different operation conditions, and discrete wavelet transform sub-signals of ECT measurements are sensitive to particle moisture. This work reveals the complex hydrodynamic behavior in the fluidized bed dryer and provides valuable information for process control.  相似文献   

4.
Phase distribution is one of the key hydrodynamic parameters useful for the design and performance assessment of fluidized bed dryers (FBDs). It has direct influence on the drying rate, thermal efficiency, residence time distribution and degree of mixing. The quality of fluidization strongly depends on the uniformity of distribution of the fluidizing gas and the physical properties of the material to be fluidized. In the present work, gamma ray tomography (GRT) study was carried out in the form of chordal solid hold-up, which was found to be greatly influenced by the gas distributor design. The performance of a gas distributor due to the prevalent practice of operating at lower values of distributor-to-bed pressure drop ratio was characterized in a 0.15 m diameter fluidized bed dryer over a broad range of superficial gas velocity. The effects of various parameters such as solids loading, particle size and particle density were analyzed with the help of the reconstructed solid hold-up profiles. The fluidization was studied in terms of maldistribution factor (χ), a value of 5% or less can be obtained by properly designing distributor for a given bed loading, particularly for batch fluidized bed dryers. An industrial size fluidized bed dryer of 1 m diameter was also examined tomographically to obtain quantitative information on the solid hold-up distribution within the bed.  相似文献   

5.
Despite being widely used in agriculture, food production and environmental monitoring and regarded as on-line chromatograph in petrochemical and biochemical industries, near infrared spectroscopy (NIR) has found difficulties in its application to processes of particle formation through crystallisation or precipitation where solids suspended in solutions cause problems in instrumentation as well as distortion of the spectra. The research work reported here was motivated by the hypothesis that the effect of particles on the NIR spectra in effect brings an opportunity instead: the spectra might contain useful information of both the solid and liquid phases. Through carefully designed experiments using both glutamic acid solutions and slurries of varied solid concentrations and particle size and temperature ranges and with the help of chemometric data analysis, it was found that the NIR spectra clearly contain sensitive information about the size, solid concentration, liquid concentration as well as polymorphs of crystals, providing the possibility of using the instrument for simultaneous measurement of the multiple properties of both phases.  相似文献   

6.
Wetted rice particles were dried in a fluidized bed and the corresponding passive acoustic emissions signals (AES) were recorded at a given frequency to study the drying phenomena and bed hydrodynamic changes as well. The results show that the end time of the constant rate zone and the end of the falling rate can be determined from the variation of standard deviation and kurtosis of AES, respectively. Frequency domain analysis was also used to quantify the moisture content of solids. For this end, the original signal was decomposed into ten sub-signals, and it was found that the energy of the 4th sub-signal can be correlated with the moisture content. The results show that the acoustic emission measurement is applicable as a practical method for on-line condition monitoring of drying process in fluidized bed dryers.  相似文献   

7.
This paper presents a mathematical model based on a three-phase theory, which is used to describe the mass and heat transfer between the gas and solids phases in a batch fluidised bed dryer. In the model, it is assumed that the dilute phase (i.e., bubble) is plug flow while the interstitial gas and the solid particles are considered as being perfectly mixed. The thermal conductivity of wet particles is modelled using a serial and parallel circuit. The moisture diffusion in wet particles was simulated using a numerical finite volume method. Applying a simplified lumped model to a single solid particle, the heat and mass transfer between the interstitial gas and solid phase is taken into account during the whole drying process as three drying rate periods: warming-up, constant rate and falling-rate. The effects of the process parameters, such as particle size, gas velocity, inlet gas temperature and relative humidity, on the moisture content of solids in the bed have been studied by numerical computation using this model. The results are in good agreement with experimental data of heat and mass transfer in fluidised bed dryers. The model will be employed for online simulation of a fluidised bed dryer and for online control.  相似文献   

8.
Based on eight transition criteria, at least two types of transition velocities are identified for the demarcation of the transition from turbulent to fast fluidization. The "critical velocity," U se , corresponds to the significant entrainment of particles from the bed, beyond which a circulating fluidized bed operation becomes essential. The "transport velocity," U tr , defines the transition to fast fluidization based on the axial solids concentration profiles. Below this velocity, a distinct interface exists between a top dilute region and a bottom dense region. Above U tr , the variation of voidage with height becomes relatively smooth. U tr is found to be a function of measurement location and riser height, as well as gas and particle properties.  相似文献   

9.
Based on eight transition criteria, at least two types of transition velocities are identified for the demarcation of the transition from turbulent to fast fluidization. The "critical velocity," U se , corresponds to the significant entrainment of particles from the bed, beyond which a circulating fluidized bed operation becomes essential. The "transport velocity," U tr , defines the transition to fast fluidization based on the axial solids concentration profiles. Below this velocity, a distinct interface exists between a top dilute region and a bottom dense region. Above U tr , the variation of voidage with height becomes relatively smooth. U tr is found to be a function of measurement location and riser height, as well as gas and particle properties.  相似文献   

10.
Wet granulation and drying of solids in fluidized beds are widely used in the pharmaceutical, food and fertilizers industries. Although the moisture content of fluidized solids is the key parameter for on-line process monitoring, reliable, accurate and economical moisture sensors are lacking. The aim of this work was, therefore, to develop a new technique using triboelectric probes for real-time measurement of moisture content in fluidized beds, and to validate its applicability to fluid bed drying of glass beads (Sauter-mean diameter of 171 μm) and silica sand particles (Sauter-mean diameter of 190 μm) wetted by water. Several triboelectric probes, installed at different locations throughout the bed, monitored the bed moisture content during both the liquid spraying and the following drying process. The measuring technique developed in this study makes use of inexpensive probes that do not require any maintenance. The triboelectric signals were continuously recorded by a data acquisition system and, at selected times, samples of bed solids were taken and analyzed for their moisture content using Karl Fischer titration. The triboelectric signals were correlated with the moisture contents determined by titration to calibrate the technique, which was found to be sensitive to moisture contents below 100 ppm. For most of the experiments the bed was operated in the bubbling regime with a superficial gas velocity of 0.4 m/s. The relationship between triboelectric signal and moisture content was unaffected by changes in the fluidization gas velocity of up to 25%, and could be easily automated for direct control of industrial granulation and drying processes.  相似文献   

11.
Reactive crystallization is widely used in the manufacture of active pharmaceutical ingredients (APIs). As APIs often have low solubility, traditional stirred tank reactors and the route of process operation and control using metastable zone width are not effective. This work investigated the integration of an impinging jet mixer and a stirred tank crystallizer that can take advantage of both the reaction and crystallization characteristics, the focus being on design optimization and scale‐up using process analytical techniques based on the Fourier transform infrared spectroscopy and focused beam reflectance measurement, as well as X‐ray diffraction and particle imaging Morphologi G3. The parameters for process operation and design of the impinging jet mixer were optimized. The research was carried out with reference to the manufacture of an antibiotic, sodium cefuroxime, first in a 1L reactor, then a 10L reactor. The crystals produced showed higher crystallinity, narrower size distribution, higher stability, and purity. © 2014 American Institute of Chemical Engineers AIChE J, 61: 503–517, 2015  相似文献   

12.
Continuous fluidized bed drying is widely used to remove moisture or solvents from granular materials. It is known that different residence times of the wet particles may lead to a distribution of product properties, e.g. different moistures. The prediction of such moisture distributions in fluidized bed dryers is of particular interest in industrial practice. In the present study, a simple analytical approach is introduced to calculate moisture distributions at the outlet of a continuous fluidized bed dryer. The model provides an analytical solution of the simple one-dimensional population balances. It will be contrasted with a traditional model approach based on averages and with experimental investigations conducted in a lab scale fluidized bed dryer under variation of the particle and the gas flow rate. Furthermore, the moisture distributions of the dried product were estimated by single particle measurements using nuclear magnetic resonance spectroscopy. It will be demonstrated that the developed analytical approach is capable to predict such moisture distributions for continuous drying processes.  相似文献   

13.
It is essential to measure and monitor the particle flow characteristics in a Wurster fluidized bed to understand and optimize the coating processes. In this article, two electrical capacitance tomography (ECT) sensors are used to measure the particle concentration in different regions in a Wurster fluidized bed for the “cold” particle flows. One ECT sensor has a 12‐4 internal‐external electrodes and another has eight electrodes. The 12‐4‐electrode ECT sensor is used to measure the particle concentration in the annular fluidization region (outside of the Wurster tube) and the eight‐electrode ECT sensor is used to measure the particle flow in the central region (inside the Wurster tube). The effect of particle type, particle moisture, fluidization velocity, and geometrical parameters on the Wurster fluidization process is studied based on the two ECT measurements. The radial particle concentration profiles in the annular fluidization and central flow regions with different operation parameters are given. Fast Fourier Transform analysis of the particle concentration in the Wurster tube is performed with different superficial air velocities. The optimum operating ranges of the Wurster fluidization process for different particles are given. In the end of the article, computational fluids dynamics simulation results are given and used to compare with the measurement results by ECT for a typical Wurster fluidized bed. © 2014 American Institute of Chemical Engineers AIChE J 60: 4051–4064, 2014  相似文献   

14.
This review paper is basically an introduction to the bibliography placed at the end, which lists recent literature concerning the on-line determination of the solids weight fraction and mass flow rate of coal in mechanical, hydraulic, or pneumatic transport, its particle size distribution, and its chemical composition, in particular the moisture, ash, and sulphur content. Although it is little more than an inventory of techniques commercially available, being tested, or under development, it is hoped that it may provide a useful summary of the state-of-the-art as a basis for planning research and development in this area.  相似文献   

15.
Summary A series of moisture curable polyurethane/polysiloxane (PUSR) copolymers with different end-capping agents were prepared based on amine terminated polysiloxane (PDMS), poly-1,4-butylene adipate glycol (PBA), 4,4′-diphenylmethane diisocyanate (MDI). The copolymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogarvimetric (TGA), X-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), X-ray photoelectron spectroscopy (XPS), surface contact angle and stress–strain measurement. Compared with conventional moisture curable PU the PUSR copolymer showed the better thermal stability and surface properties due to the forming of Si-O-Si crosslinking network and the enrichment of siloxane chains on the surface of films , and the tensile strength was not obviously damaged. DMTA results suggested that micro-phase separation was formed in the PUSR copolymer. It was found that the PUSR copolymer with mixed alkoxysilanes as end-capping agents showed better compromised properties than that with single alkoxysilane.  相似文献   

16.
李兰菊  李秀喜  徐三 《化工学报》2018,69(3):1046-1052
晶体的颗粒尺寸分布和形状是结晶产品的两个关键质量指标,不仅影响结晶产品的性质,还影响下游的过滤、干燥及运输存储等过程。利用超声粒度分析仪、衰减全反射傅里叶红外光谱仪、浊度仪与二维成像系统等分析仪器在线测量了不同搅拌速率和不同降温速率下阿司匹林乙醇溶液结晶过程中温度、浓度、颗粒尺寸分布和形状的变化情况。实验结果表明:较低的降温速率或者较大的搅拌速率条件下得到含有大量细晶的阿司匹林结晶产品;较高的降温速率下得到长宽比较大的阿司匹林结晶产品。调节降温速率和搅拌速率是一种有效控制阿司匹林结晶产品尺寸分布与形状的方法。  相似文献   

17.
This paper reports the solids behaviour in a dilute gas-solid two-phase mixture flowing through a packed bed. The positron emission particle tracking (PEPT) technique was used in the work, which allowed investigation of three-dimensional solids motion at the single suspended particle level. Processing of the data gave solids velocity, the residence time of suspended particles, bed tortuosity in terms of solids motion, as well as solids occupancy in the cross-section of the packed bed. The results suggest that the wall effect on the motion of suspended particles is limited to approximately one packed particle diameter under the conditions of this work. Both the average axial and radial velocities of suspended particles, normalised by the superficial gas velocity, change periodically with radial position, but the periodicity does not correspond exactly to the packed particle diameter. The peak and trough values of the average axial velocity of the suspended particles in the bulk region are, respectively, ∼25% and ∼15% of the superficial gas velocity under the conditions of this work and the superficial gas velocity shows little effect. The peak and trough values of the average radial velocity of the suspended particles in the bulk region are, respectively, +5% (positive) and -5% (negative) of the superficial gas velocity. The results of the residence time and tortuosity of the suspended particles show an approximately Gaussian distribution with the peak residence time and tortuosity increasing with decreasing superficial gas velocity. The occupancy data suggest that particles spend more time in an annular region close to the wall, indicating a non-uniform particle distribution across the packed bed cross-section.  相似文献   

18.
利用声发射技术采集不同流化气速下流化床内颗粒与壁面碰撞的声信号,结合声能量及递归分析法研究不同流型下颗粒运动特征,得到鼓泡流态化到湍动流态化的临界转变速度及流型转变规律。特别是针对声能量分析无法准确区分不同床层高度处流型转变的不足,利用递归分析可有效预测系统周期性的特点,将声信号进行递归分析,研究了流化床不同位置的流型转变性质。结果表明,鼓泡流态化下颗粒运动的周期性较湍动流态化强,并能够清晰地检测到由鼓泡流态化向湍动流态化的流型转变速度,而且床层较低处的流型转变速度比床层较高处大。由此获得了一种便捷灵敏、安全环保的非侵入式流化床流型转变速度的测量技术,可用于对整个流化床内不同位置流型转变过程的实时在线监控。  相似文献   

19.
Bridging or arching of flowing solids particles is a serious hazard in the operation of moving bed systems. The mechanics of the arching has been extensively analyzed in the context of particle discharge from a hopper with conical geometry by considering the particulate layer stress distribution. However, bridging can also occur in a moving bed system with cylindrical geometry during the continuous mass flow of solids particles. Experimental work conducted in this study reveals that the appearance of solids bridging is normally accompanied by the presence of fine particles in the coarse moving particles as well as by the countercurrent interstitial gas flow. In this study, a stress analysis of the layered particles distributed in a cylindrical, vertical moving bed that flows downward opposing to upward flow of the interstitial gas is developed to quantify the bridging phenomenon. The analysis takes into account of the effects of presence of fine powder in the coarse particle flows and properties, such as particle‐size distribution, bed voidage, and interstitial gas flow rate. The experimental validation of the present stress analysis for moving bed systems with varied fine and coarse particle concentration distributions, and interstitial gas velocities is also conducted. The stress distributions of the particles under flowing and arching conditions are obtained. An arching criterion is formulated, which indicates that the critical radius of the standpipe to avoid arching phenomenon is only related to the property of the bulk solids in the present geometric configuration of the flow system. © 2014 American Institute of Chemical Engineers AIChE J, 60: 881–892, 2014  相似文献   

20.
A diffusion-based mathematical model is presented for the prediction of the dynamics of drying in continuous well-mixed fluidized/spouted beds. Numerical techniques are used to solve the model equations. The outlet solids moisture content, the outlet air humidity and solids temperature are predicted as a function of time for the falling rate drying period. The model is helpful in describing the drying process during the startup periods and in studying open loop behavior of drying process. The model is also useful in designing control system for fluidized/spouted bed dryers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号