首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a locking-free n-sided C1 polygonal finite element is presented for nonlinear analysis of laminated plates. The plate kinematics is based on Reddy's third-order shear deformation theory (TSDT). The in-plane displacements are approximated using barycentric form of Lagrange shape functions. The weak-form Galerkin formulation based on the kinematics of TSDT requires the C1 approximation of the transverse displacement over the polygonal element. This is achieved by embedding the C0 Lagrange interpolants over a cubic Bernstein-Bezier patch defined over the n-sided polygonal element. Such an approach ensures the continuity of the derivative field at the inter-element edges. In addition, Eringen's stress-gradient nonlocal constitutive equations are used in the present formulation to account for nonlocality. The effect of geometric nonlinearity is taken by considering the von Kármán geometric nonlinearity. Examples are presented to show the effect of nonlocality, geometric nonlinearity, and the lamination scheme on the bending behavior of laminated composite plates. The results are compared with analytical solutions, conventional FEM results, and with those available in the literature. Shear locking is addressed considering reduced integration and consistent interpolation techniques. The patch test is used to check the convergence of the element developed.  相似文献   

2.
This study deals with the stochastic nonlinear bending response of functionally graded materials (FGMs) plate with uncertain system properties subjected to transverse uniformly distributed load in thermal environments. The system properties such as material properties of each constituent’s material, volume fraction index and transverse load are taken as independent random input variables. The material properties are assumed to be temperature independent (TID) and temperature dependent (TD). The basic formulation is based on higher order shear deformation theory with von-Karman nonlinear strain kinematics using modified C 0 continuity. A direct iterative based nonlinear finite element method in conjunction with first-order perturbation technique developed by last two authors for the composite plate is extended for the FGM plate to compute the second order statistics (mean and standard deviation) of the nonlinear bending response of the FGM plates. Effects of TD, TID material properties, aspect ratios, volume fraction index and boundary conditions, uniform temperature and non-uniform temperature distribution on the nonlinear bending are presented in detail through parametric studies. The present outlined approach has been validated with the results available in the literature and independent Monte Carlo simulation.  相似文献   

3.
A simple and shear-flexible rectangular composite layered plate element and nonlinear finite element analysis procedures are developed in this paper for nonlinear analysis of fiber reinforced plastic (FRP)-reinforced concrete slabs. The composite layered plate element is constructed based on Mindlin–Reissner plate theory and Timoshenko’s composite beam functions, and transverse shear effects and membrane-bending coupling effects are accounted for. Both geometric nonlinearity and material nonlinearity of the materials, which incorporates tension, compression, tension stiffening and cracking of the concrete, are included in the new model. The developed element and the nonlinear finite element analysis procedures are validated by comparing the computed numerical results of numerical examples with those obtained from experimental investigations and from the commercial finite element analysis package ABAQUS. The element is then employed to investigate the nonlinear structural behavior and the cracking progress of a clamped two-way FRP-reinforced concrete slab. The influences of reinforcement with different materials, ratio and layout in tension or compressive regions on structural behavior of the clamped slabs are investigated by parametric studies.  相似文献   

4.
This paper present the second ordered statistics of first-ply failure response of laminated composite plate with random material properties under random loading. The basic formulation is based on higher order shear deformation plate theory (HSDT) with the geometrically nonlinearity in the von-Karman. The direct iterative based C0 nonlinear finite element method combined with mean centered first order perturbation technique developed by the authors are extended and successfully applied nonlinearity for failure problem with a reasonable accuracy to predict the second order statistics (standard deviation) of first-ply failure response using Tsai-Wu and Hoffman failure criterion with macroscopic analysis. Typical numerical results for various combinations of boundary conditions, plate thickness ratios, aspect ratios, laminates scheme and layers, elastic modulus ratios have been presented to illustrate the application of developed procedure. Some new results are presented and examined which clearly demonstrated the importance of the randomness in the system parameters in the failure response of the structures subjected to transverse loadings.  相似文献   

5.
This paper investigates the effects of discrete layer transverse shear strain and discrete layer transverse normal strain on the predicted progressive damage response and global failure of fiber-reinforced composite laminates. These effects are isolated using a hierarchical, displacement-based 2-D finite element model that includes the first-order shear deformation model (FSD), type-I layerwise models (LW1) and type-II layerwise models (LW2) as special cases. Both the LW1 layerwise model and the more familiar FSD model use a reduced constitutive matrix that is based on the assumption of zero transverse normal stress; however, the LW1 model includes discrete layer transverse shear effects via in-plane displacement components that are C 0 continuous with respect to the thickness coordinate. The LW2 layerwise model utilizes a full 3-D constitutive matrix and includes both discrete layer transverse shear effects and discrete layer transverse normal effects by expanding all three displacement components as C 0 continuous functions of the thickness coordinate. The hierarchical finite element model incorporates a 3-D continuum damage mechanics (CDM) model that predicts local orthotropic damage evolution and local stiffness reduction at the geometric scale represented by the homogenized composite material ply. In modeling laminates that exhibit either widespread or localized transverse shear deformation, the results obtained in this study clearly show that the inclusion of discrete layer kinematics significantly increases the rate of local damage accumulation and significantly reduces the predicted global failure load compared to solutions obtained from first-order shear deformable models. The source of this effect can be traced to the improved resolution of local interlaminar shear stress concentrations, which results in faster local damage evolution and earlier cascading of localized failures into widespread global failure.  相似文献   

6.
Postbuckling analysis of functionally graded ceramic-metal plates under temperature field is presented using finite element multi-mode method. The three-node triangular element based on the Mindlin plate theory is employed to account for the transverse shear strains, and the von-Karman nonlinear strain-displacement relation is utilized considering the geometric nonlinearity. The effective material properties are assumed to vary through the thickness direction according to the power law distribution of the volume fraction of constituents. The temperature distribution along the thickness is determined by one dimensional Fourier equations of heat conduction. The buckling mode shape solved from eigen-buckling analysis is adopted as the assumed mode function to reduce the degrees of freedom of nonlinear postbuckling equilibrium equations. The postbuckling response is obtained by solving the nonlinear equilibrium equations, and compared with the Newton- Raphson numerical results. The effects of boundary conditions, material gradient index and temperature distribution on postbuckling behavior are examined.  相似文献   

7.
This paper presents the stochastic nonlinear free vibration response of elastically supported functionally graded materials (FGMs) plate resting on two parameter Pasternak foundation having Winkler cubic nonlinearity with random system properties subjected to uniform and nonuniform temperature changes with temperature independent (TID) and dependent (TD) material properties. System properties such as material properties of each constituent’s material, volume fraction index and foundation parameters are taken as independent random input variables. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strains using modified C0 continuity. A direct iterative based nonlinear finite element method in conjunction with first order perturbation technique (FOPT) developed by last two authors for the composite plate is extended for FGM plate to compute the second order statistics (mean and coefficient of variation) of the nonlinear fundamental frequency. The present outlined approach has been validated with those results available in the literature and independent Monte Carlo simulation (MCS).  相似文献   

8.
A C0-type global-local higher order theory including interlaminar stress continuity is proposed for the cross-ply laminated composite and sandwich plates in this paper, which is able to a priori satisfy the continuity conditions of transverse shear stresses at interfaces. Moreover, total number of unknowns involved in the model is independent of number of layers. Compared to other higher-order theories satisfying the continuity conditions of transverse shear stresses at interfaces, merit of the proposed model is that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields, so that the C0 interpolation functions is only required during its finite element implementation. To verify the present model, a C0 three-node triangular element is used for bending analysis of laminated composite and sandwich plates. It ought to be shown that all variables involved in present model are discretized by only using linear interpolation functions within an element. Numerical results show that the C0 plate element based on the present theory may accurately calculate transverse shear stresses without any postprocessing, and the present results agree well with those obtained from the C1-type higher order theory. Compared with the C1 plate bending element, the present finite element is simple, convenient to use and accurate enough.  相似文献   

9.
Response sensitivity is an essential component to understanding the complexity of material and geometric nonlinear finite element formulations of structural response. The direct differentiation method (DDM), a versatile approach to computing response sensitivity, requires differentiation of the equations that govern the state determination of an element and it produces accurate and efficient results. The DDM is applied to a force‐based element formulation that utilizes curvature‐shear‐based displacement interpolation (CSBDI) in its state determination for material and geometric nonlinearity in the basic system of the element. The response sensitivity equations are verified against finite difference computations, and a detailed example shows the effect of parameters that control flexure–shear interaction for a stress resultant plasticity model. The developed equations make the CSBDI force‐based element available for gradient‐based applications such as reliability and optimization where efficient computation of response sensitivities is necessary for convergence of gradient‐based search algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a simple C0 isoparametric finite element formulation based on higher-order shear deformation theory is presented for static analysis of functionally graded material sandwich shells (FGMSS). To characterize the membrane-flexure behavior observed in a functionally graded shell, a displacement field involving higher-order terms in in-plane and transverse fields is considered. The proposed kinematics field incorporates for transverse normal deformation, transverse shear deformation, and nonlinear variation of the in-plane displacement field through the thickness to predict the overall response of the shell in an accurate sense. To develop the efficient C0 formulation, the derivatives of transverse displacement are treated as independent field variables (nodal unknowns). Voigt's rule of mixture is employed to ascertain the mechanical properties of each layer's constituents along the thickness direction. A wide range of numerical problems are solved assuming various parameters: side-thickness ratio, curvature-side ratio, and gradation parameter, and their interactions with regard to static analysis of FGMSS are discussed in brief. Deflection and stresses incorporating different thickness schemes of sandwich shells are presented in the form of figures. To validate the results, a functionally graded shell without sandwich arrangement is considered. Since no results are available on static analysis of FGMSS, the present 2D model based on the finite element method might be helpful in assessing the applicability of other analytical and numerical models in this area in the future.  相似文献   

11.
Textile composite are used extensively in aerospace as they offer a 3D reinforcement in a single layer providing better mechanical properties in both in‐plane and transverse directions. This paper reports on the mechanical behavior of a plain weave textile fabric under the compressive loading. Unit cell geometry of the plain weave fabric structure is identified and its model is created using TexGen geometric modeling scheme developed by the University of Nottingham (U.K.). Later on its mechanical behavior is predicted using finite element modeling (FEM) based simulation software ABAQUS® incorporating a transversely isotropic material law. Strain energy of the developed model has been compared with that of the published results and shows very good agreement. The analysis indicated that transverse‐longitudinal shear (TLS) modulus plays an important role in characterizing the behavior of the woven fabric under compression, while the friction between the yarns and longitudinal stiffness has less significant influence on compaction behavior. In order to ascertain the effectiveness of the developed model, exhaustive parametric studies have also been conducted to investigate the effect of transverse‐longitudinal shear modulus on some of the important parameters such as artificial strain energy, external work, frictional dissipation, internal energy, kinetic energy, strain energy and total energy of the model. The developed model has the capacity to predict and simulate the behavior of variety of fabric architectures based on their constituent yarn properties under various regimes of service loads.  相似文献   

12.
This paper investigates the quasi static transverse compression behavior of Kevlar KM2 single fiber widely used in high velocity impact (HVI) applications. The nominal stress–strain response of single fibers exhibits nonlinear inelastic behavior under transverse compression. The nonlinearity is due to both geometric and material nonlinearities. The inelastic behavior is attributed to plastic deformation and microstructural damage resulting from fibrillation and micro cracking. The experimental set up allows for the observation and measurement of compressed width in real time. An experimental methodology is presented to determine the fiber material constitutive behavior by removing the geometric nonlinearity due to the growing contact area. Results from finite element model of the test method are correlated with the experimental results to assess the accuracy of the constitutive model.  相似文献   

13.
金属裂纹板复合材料单面胶接修补结构应力分析   总被引:3,自引:0,他引:3       下载免费PDF全文
考虑金属裂纹板复合材料单面胶接修补结构的几何非线性和边界条件,建立了考虑弯曲变形单面修补结构力学分析模型,计算出承受面内载荷时修补结构的弯矩和挠度,将补片自由端和金属板裂纹处的弯矩作为胶层应力控制微分方程的边界条件,推导出剪应力和剥离应力的解析解,及裂纹张开位移的表达式,并与有限元数值结果进行对比。分析结果表明,胶接修补结构应力分析理论模型和相关简化假设合理、正确。利用所建立的解析模型研究了金属裂纹复合材料单面胶接修补结构的应力分布特点及胶层主导破坏模式的失效机制,为胶接修补结构的承载能力分析以及结构改进设计提供了一定的理论依据。  相似文献   

14.
柔性飞行器在气动力作用下会发生大变形,产生结构几何非线性,线性小变形方法难以获得准确的气动弹性分析结果。基于RANs的三维N-S流场控制方程耦合非线性结构静力学方程时域分析方法,用于考虑结构几何非线性的静气动弹性分析。该方法在结构静力学方程求解上采用非线性增量有限元方法进行迭代求解,考虑结构刚度矩阵随结构位形的变化,采用径向基函数方法实现气动/结构界面的数据交换和动网格变形。在建立某型宽体客机复材机翼三维有限元模型的基础上,对其静气动弹性进行了数值仿真,分析了线性结构和考虑结构几何非线性的结构在静气动弹性作用下翼面扭转、展向位移、垂向位移以及升力系数等物理量。算例结果表明,与线性结果相比,非线性结构由于结构几何非线性的影响,在展向和垂向变形上两者存在显著差异。为准确进行柔性结构的气动弹性分析,必须考虑结构几何非线性的影响。  相似文献   

15.
S. Naboulsi  S. Mall   《Composite Structures》1998,41(3-4):303-313
Analyses of adhesively bonded composite patches to repair cracked structures have been the focus of many studies. Most of these studies investigated the damage tolerance of the repaired structure by using linear analysis. This study involves nonlinear analysis of the adhesively bonded composite patch to investigate its effects on the damage tolerance of the repaired structure. The nonlinear analysis utilizes the three-layer technique which includes geometric nonlinearity to account for large displacements of the repaired structure and also material nonlinearity of the adhesive. The three-layer technique uses two-dimensional finite element analysis with Mindlin plate elements to model the cracked plate, adhesive and composite patch. The effects of geometric nonlinearity on the damage tolerance of the cracked plate is investigated by computing the stress intensity factor and fatigue growth rate of the crack in the plate. The adhesive is modeled as a nonlinear material to characterize debond behavior. The elastic-plastic analysis of the adhesive utilizes the extended Drucker-Prager model. A detailed discussion on the effects of nonlinear analysis for a bonded composite patch repair of a cracked aluminum panel is presented in this paper.  相似文献   

16.
Static response characteristics and failure load of laminated composite shallow cylindrical and conical panels subjected to internal/external lateral pressure are investigated using continuum damage mechanics approach considering geometric nonlinearity and damage evolution. The damage model is based on a generalized macroscopic continuum theory within the framework of irreversible thermodynamics and enables to predict the progressive damage and failure load. Damage variables are introduced for the phenomenological treatment of the state of defects and its implications on the degradation of the stiffness properties. The analysis is carried out using finite element method based on the first order shear deformation theory. The nonlinear governing equations are solved using Newton–Raphson iterative technique coupled with the adaptive displacement control method to efficiently trace the equilibrium path. The detailed parametric study is carried out to investigate the influences of geometric nonlinearity, evolving damage, span-to-thickness ratio, lamination scheme and semi-cone angle on the static response and failure load of laminated cylindrical/conical panels. It is revealed that the membrane forces due to geometric nonlinearity significantly influence the damage distribution and failure load.  相似文献   

17.
This paper deals with the stochastic post buckling response the functionally graded material (FGMs) beam with surface bonded piezoelectric layers subjected to thermoelectromechanical loadings. A C0 nonlinear finite element method using higher order shear deformation theory with von-Karman nonlinearity is used for basic formulation. The random system parameter such as material properties of FGM and piezoelectric layers and thermoelectromechanical loadings are modeled as uncorrelated random input variables. The first and second order perturbation method and Monte Carlo sampling (MCS) are proposed to examine the mean, coefficient of variation, probability distribution function and probability of failure of critical post buckling load. Typical numerical results are presented for volume fraction indexes, slenderness ratios, boundary conditions, piezoelectric layers and thermoelectromechanical loadings with random system properties. The present outlined approach is validated with the results available in the literature and by employing MCS.  相似文献   

18.
A C0 three-node shell finite element well suited to non-linear calculations is proposed. The element is based on Mindlin kinematics and the degenerated solid approach. Linear Lagrange functions are used for geometry and displacement interpolations. The formulation is made in the natural material frame. A strain interpolation avoids shear locking and an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. The modifications of strain interpolations concern both the non-linear and linear parts of strain and are taken into account in ail calculations, among others in the expression of the initial stress stiffness matrix. A single set of integration points on the normal at the centre of gravity is sufficient, which is very interesting for numerical efficiency especially in the case of non-linear analyses.  相似文献   

19.
A new three‐noded C1 beam finite element is derived for the analysis of sandwich beams. The formulation includes transverse shear and warping due to torsion. It also accounts for the interlaminar continuity conditions at the interfaces between the layers, and the boundary conditions at the upper and lower surfaces of the beam. The transverse shear deformation is represented by a cosine function of a higher order. This allows us to avoid using shear correction factors. A warping function obtained from a three‐dimensional elasticity solution is used in the present model. Since the field consistency approach is accounted for interpolating the transverse strain and torsional strain, an exact integration scheme is employed in evaluating the strain energy terms. Performance of the element is tested by comparing the present results with exact three‐dimensional solu‐tions available for laminates under bending, and the elasticity three‐dimensional solution deduced from the de Saint‐Venant solution including both torsion with warping and bending. In addition, three‐dimensional solid finite elements using 27 noded‐brick elements have been used to bring out a reference solution not available for sandwich structures having high shear modular ratio between skins and core. A detailed parametric study is carried out to show the effects of various parameters such as length‐to‐thickness ratio, shear modular ratio, boundary conditions, free (de Saint‐Venant) and constrained torsion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, nonlinear free vibration behaviour of thermally post-buckled laminated composite spherical shallow shell panel is analyzed. The nonlinearity in geometry of the shell panel is considered in Green–Lagrange sense and the mathematical model is developed based on higher order shear deformation theory (HSDT). System of governing differential equations are derived using Hamilton’s principle. A direct iterative method in conjunction with nonlinear finite element approach is used to solve the system of equations. Effects of various geometries and material properties on the nonlinear free vibration frequencies are examined in detail and discussed. Results are obtained using the present model and are compared with those available in literature. The difference between the results speaks the necessity and the requirement of the present model for the prediction of actual nonlinear characteristics of the laminated structures having severe nonlinearity in thermal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号