首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, buckling analysis of functionally graded material (FGM) beams with or without surface-bonded piezoelectric layers subjected to both thermal loading and constant voltage is studied. Thermal and mechanical properties of FGM layer is assumed to follow the power law distribution in thickness direction, except Poisson’s ratio which is considered constant. The Timoshenko beam theory and nonlinear strain-displacement relations are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of boundary conditions, existence of bifurcation-type buckling is examined and for each case of thermal loading and boundary conditions, closed-form solutions are obtained which are easily usable for engineers and designers. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of FGM beam on critical buckling temperature difference are examined.  相似文献   

2.
Compressive postbuckling under thermal environments and thermal postbuckling due to a uniform temperature rise are presented for a simply supported, shear deformable functionally graded plate with piezoelectric fiber reinforced composite (PFRC) actuators. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and PFRC layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. A two step perturbation technique is employed to determine buckling loads (temperature) and postbuckling equilibrium paths. The numerical illustrations concern the compressive and thermal postbuckling behaviors of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded PFRC actuators under different sets of thermal and electric loading conditions. The results for monolithic piezoelectric actuator, which is a special case in the present study, are compared with those of PFRC actuators. The results reveal that, in the compressive buckling case, the applied voltage usually has a small effect on the postbuckling load–deflection curves of the plate with PFRC actuators, whereas in the thermal buckling case, the effect of applied voltage is more pronounced for the plate with PFRC actuators, compared to the results of the same plate with monolithic piezoelectric actuators.  相似文献   

3.
In the present study, finite element formulation based on higher order shear deformation plate theory is developed to analyze nonlinear natural frequencies, time and frequency responses of functionally graded plate with surface-bonded piezoelectric layers under thermal, electrical and mechanical loads. The von Karman nonlinear strain–displacement relationship is used to account for the large deflection of the plate. The material properties of functionally graded material (FGM) are assumed temperature-dependent. The temperature field has uniform distribution over the plate surface and varies in the thickness direction. The considered electric field only has non-zero-valued component Ez. Numerical results are presented to study effects of FGM volume fraction exponent, applied voltage in piezoelectric layers, thermal load and vibration amplitude on nonlinear natural frequencies and time response of FGM plate with integrated piezoelectric layers. In addition, nonlinear frequency response diagrams of the plate are presented and effects of different parameters such as FGM volume fraction exponent, temperature gradient, and piezoelectric voltage are investigated.  相似文献   

4.
A thermal buckling analysis is presented for functionally graded rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of thermal load and constant applied actuator voltage. The temperature-dependent material properties of the functionally graded plate are assumed to vary as a power form of the thickness coordinate. Derivation of the equations is based on the third-order shear deformation plate theory. Results for the critical buckling temperatures are obtained in closed-form solution, which are convenient to be used in engineering design applications. The effects of the applied actuator voltage, plate geometry, and volume fraction exponent of the functionally graded material on the buckling temperature are investigated.  相似文献   

5.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

6.
《Composites Part B》2007,38(2):201-215
Nonlinear thermal bending analysis is presented for a simply supported, shear deformable functionally graded plate without or with piezoelectric actuators subjected to the combined action of thermal and electrical loads. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations of an FGM plate are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. A two step perturbation technique is employed to determine the thermal load–deflection and thermal load–bending moment curves. The numerical illustrations concern nonlinear bending response of FGM plates without or with surface bonded piezoelectric actuators due to heat conduction and under different sets of electric loading conditions. The results reveal that for the case of heat conduction the nonlinear thermal bending responses are quite different to those of FGM plates subjected to transverse mechanical loads, and the temperature-dependency of FGMs could not be neglected in the thermal bending analysis.  相似文献   

7.
This study presents the buckling analysis of a solid circular plate made of porous material bounded with piezoelectric sensor–actuator patches. The porous material properties vary through the thickness direction of the plate following a given function. The general mechanical nonlinear equilibrium and linear stability equations are derived using the variational formulations to obtain the governing equations of the piezoelectric porous plate. The buckling load is derived for solid circular plates under uniform radial compressive loading for the clamped edge condition. The effects of piezoelectric layers on the buckling load of the plate, piezoelectric layer-to-porous plate thickness ratio, feedback gain, and variation of porosity are investigated. The results are verified with the known results in the literature.  相似文献   

8.
The dynamic instability of functionally graded material (FGM) sandwich plates under an arbitrary periodic load in a thermal environment is studied. The sandwich plate is made up of two layers of FGM face sheets and one layer of homogeneous metal core. The properties of a FGM layer vary continuously across the thickness according to a simple power law. A set of differential equations of Mathieu type is formed to determine the dynamic instability regions based on Bolotin's method. The dynamic stability of the FGM sandwich plates is sensitive to the temperature rise, volume fraction index, thickness ratio, and static and dynamic load factor.  相似文献   

9.
A thermomechanical buckling analysis is presented for simply supported rectangular symmetric cross-ply laminated composite plates that are integrated with surface-mounted piezoelectric actuators and are subjected to the combined action of in-plane compressive edge loads, two types of thermal loads, and constant applied actuator voltage. The formulation of equations is based on the classical laminated plate theory and the von-Karman non-linear kinematic relations. The analysis uses an exact method to obtain closed-form solutions for the buckling load. The effects of applied actuator voltage, thermal and mechanical loads, plate geometry, and lay-up configuration of the laminated plates are investigated. The novelty of the present work is to obtain closed-form solutions for electro-thermomechanical buckling of hybrid composite plates, and to cover non-uniform temperature distribution loading. The results for various states are verified with known data in the literature.  相似文献   

10.
Three-dimensional thermomechanical buckling analysis is investigated for functionally graded composite structures that composed of ceramic, functionally graded material (FGM), and metal layers. Material properties are assumed to be temperature dependent, and in FGM layer, they are varied continuously in the thickness direction according to a simple power law distribution in terms of the ceramic and metal volume fractions. The finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. Temperature at each node is obtained by solving the thermomechanical equations. For a time discretization, Crank–Nicolson method is used. In numerical results, the thermal buckling behavior of FGM composite structures due to FGM thickness ratios, volume fraction distributions, and system geometric parameters are analyzed.  相似文献   

11.
In this article, thermal buckling analysis of moderately thick functionally graded annular sector plate is studied. The equilibrium and stability equations are derived using first order shear deformation plate theory. These equations are five highly coupled partial differential equations. By using an analytical method, the coupled stability equations are replaced by four decoupled equations. Solving the decoupled equations and satisfying the boundary conditions, the critical buckling temperature is found analytically. To this end, it is assumed that the annular sector plate is simply supported in radial edges and it has arbitrary boundary conditions along the circular edges. Thermal buckling of functionally graded annular sector plate for two types of thermal loading, uniform temperature rise and gradient through the thickness, are investigated. Finally, the effects of boundary conditions, power law index, plate thickness, annularity and sector angle on the critical buckling temperature of functionally graded annular sector plates are discussed in details.  相似文献   

12.
The sinusoidal shear deformation plate theory is used to study the thermal buckling of functionally graded material (FGM) sandwich plates. This theory includes the shear deformation and contains the higher- and first-order shear deformation theories and classical plate theory as special cases. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. Several kinds of symmetric sandwich plates are presented. Stability equations of FGM sandwich plates include the thermal effects. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio, loading type and sandwich plate type on the critical buckling for sandwich plates.  相似文献   

13.
In the present paper, mechanical and thermal buckling analyses of two-directional functionally graded material (2D-FGM) circular plate are investigated. The motion equations have been derived based on the first-order shear deformation theory (FSDT) and power series method has been employed to solve the motion equations. Two different kinds of boundary condition including simply supported and fixed are considered. The material properties are assumed to vary in both transverse and radial directions according to power and exponential laws, respectively. Comparisons with available studies in the literature confirm the high accuracy of the current approach. The effects of geometrical parameters and 2D-FG power indices on the critical buckling load have been studied. It is shown that increase of modulus of elasticity of outer layers of plate due to higher presence of hard phase of FGM, in radius and thickness directions of the plate makes it possible to attain a more solid structure against mechanical buckling loads, while increase of coefficient of thermal expansion and coefficient of thermal conduction of outer layers of plate results in less stability against thermal buckling loads.  相似文献   

14.
 An efficient finite element model is presented for the static and dynamic piezothermoelastic analysis and control of FGM plates under temperature gradient environments using integrated piezoelectric sensor/actuator layers. The properties of an FGM plate are functionally graded in the thickness direction according to a volume fraction power law distribution. A constant displacement-cum-velocity feedback control algorithm that couples the direct and inverse piezoelectric effects is applied to provide active feedback control of the integrated FGM plate in a closed loop system. Numerical results for the static and dynamic control are presented for the FGM plate, which consists of zirconia and aluminum. The effects of the constituent volume fractions and the influence of feedback control gain on the static and dynamic responses of the FGM plates are examined. Received: 13 March 2002 / Accepted: 5 March 2003 The work described in this paper was supported by a grant awarded by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 1024/01E).  相似文献   

15.
Buckling analysis of perfect circular functionally graded plates with surface-bounded piezoelectric layers based on the first-order shear deformation theory is presented in this article. The material properties of the functionally graded (FG) layer are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituents. The plate is assumed to be under constant electrical field and two types of thermal loadings, namely, the uniform temperature rise and nonlinear temperature gradient through the thickness. Also, the stability of a plate under radial mechanical compressive force is examined. The equilibrium and stability equations are derived based on the first-order shear deformation plate theory using a variational approach. The boundary condition of the plate as an immovable type of the clamped edge is considered. Resulting equations are employed to obtain the closed-form solution for the critical buckling temperature for each loading case. The effects of electric field, piezo-to-host thickness ratio, and power law index of functionally graded plates subjected to thermo-mechanical-electrical loads are investigated. The results are compared with the classical plate theory and verified with the available data in the open literature.  相似文献   

16.
Nonlinear vibration, nonlinear bending and postbuckling analyses are presented for a sandwich plate with FGM face sheets resting on an elastic foundation in thermal environments. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both FGM face sheets and homogeneous core layer are assumed to be temperature-dependent. The numerical results reveal that the foundation stiffness and temperature rise have a significant effect on the natural frequency, buckling load, postbuckling and nonlinear bending behaviors of sandwich plates. The results also reveal that the core-to-face sheet thickness ratio and the volume fraction distribution of FGM face sheets have a significant effect on the natural frequency, buckling load and postbuckling behavior of the sandwich plate, whereas this effect is less pronounced for the nonlinear bending, and is marginal for the nonlinear to linear frequency ratios of the same sandwich plate.  相似文献   

17.
ABSTRACT

In this article, the equations of motion for functionally graded plates with surface-mounted piezoelectric layers, while accounting for the gradient elasticity through the modified couple stress model and linear piezoelectricity, are derived using Hamilton’s principle. The formulation includes the coupling between mechanical deformations and the charge equations of electrostatics. The mathematical model developed herein is an equivalent single layer theory for mechanical displacement field and the potential functions. The in-plane displacements are assumed to vary as cubic functions of the thickness coordinate while the transverse displacement is assumed to vary as a quadratic function of the thickness coordinate through plate thickness. The potential function is assumed as the combination of half cosine variation of electric potential and linear variation of applied voltage on outer surfaces. The approach described here is that standard plate models can be enhanced to include the coupling between the charge equations and the mechanical deformations as well as the size dependent effect of micro- and nano-scale structures. An analytical solution of the developed model is presented using the Navier solution technique. A parametric study is performed to study the effect of material variation through thickness of plates, length scale parameters to capture the size-dependent effects, and thickness ratio between piezoelectric layers and the whole plate.  相似文献   

18.
Nonlinear vibration analysis of thin circular pre-stressed functionally graded (FG) plate integrated with two uniformly distributed piezoelectric actuator layers with an initial nonlinear large deformation are presented in this paper. Nonlinear governing equations of motion are derived based on classical plate theory (CPT) with von-Karman type geometrical large nonlinear deformations. A nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed piezoelectrically actuated circular FG plate are derived. An exact series expansion method is used to model the nonlinear electro-mechanical vibration behavior of the structure. Control of the FG plate’s nonlinear deflections and natural frequencies using high control voltages are studied and their nonlinear effects are evaluated. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage as well as gradient index of FG plate on the dynamic characteristics of the structure.  相似文献   

19.
M. Ishihara  N. Noda 《Acta Mechanica》2003,166(1-4):103-118
Summary. In this paper, we analyze the nonlinear dynamic behavior of a piezothermoelastic laminated plate with anisotropic material properties. The analytical model is a rectangular laminate composed of fiber-reinforced laminae and piezoelectric layers. The model is assumed to be a symmetric cross-ply laminate with all egdes simply-supported and to be subjected to mechanical, thermal and electrical loads as intended control procedures or as disturbances. The von Kármán strains are introduced to treat non-linear deformation. The behavior of the laminate is analyzed by using the Galerkin Method. We discuss the following quantities: (i) the buckling temperature due to in-plane thermal load; (ii) the large static deflection due to combined in-plane and anti-plane loads; (iii) the natural frequency of infinitesimal oscillation around the static equilibrium state; (iv) the natural frequency of the oscillation with finite amplitude around the static equilibrium state. Moreover, numerical examples are shown to investigate the methods to rise the buckling temperature, to linearize the thermal deflection and the natural frequencies by applying the electrical voltage to the piezoelectric actuators.  相似文献   

20.
An efficient finite element formulation based on a first‐order shear deformation theory (FSDT) is presented for the active control of functionally gradient material (FGM) plates with integrated piezoelectric sensor/actuator layers subjected to a thermal gradient; this is accomplished using both static and dynamic piezothermoelastic analyses. The formulation based on FSDT can be applied to a range of relatively thin‐to‐moderately thick plates. A constant displacement‐cum‐velocity feedback control algorithm coupling the direct and inverse piezoelectric effects is applied to provide active feedback control of the integrated FGM plate in a self‐monitoring and self‐controlling system. Numerical results for the control of bending and torsional deflections and/or vibrations are presented for a FGM plate comprising zirconia and aluminium. The effects of constituent volume fraction and the influence of feedback control gain on the static and dynamic responses of the FGM plates are examined in detail. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号