首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了次磷酸铝(Al Pi)对苯乙烯-丁二烯-丙烯腈三元共聚物(ABS)/聚酰胺(PA)6/苯乙烯-马来酸酐共聚物(SMA)/聚磷酸胺(APP)无卤阻燃材料阻燃性能的影响。采用极限氧指数仪和热重分析仪等研究了改性前后ABS无卤阻燃材料的阻燃性能。结果表明:Al Pi的加入改善了ABS/PA 6/SMA/APP无卤阻燃材料的燃烧性能。固定APP与Al Pi的总质量分数为20%,当m(APP)∶m(Al Pi)为17∶3时,改性ABS无卤阻燃材料的极限氧指数达30%,阻燃等级达到UL-94 V-0级,阻燃材料在700℃的残炭率为7.05%,而未加Al Pi的阻燃材料在700℃的残炭率仅为2.22%。  相似文献   

2.
以多壁碳纳米管、表面处理MWCNTs、MWCNTs/纳米氧化钛复合对聚苯乙烯(PS)进行阻燃改性.通过热失重(TG)和氧指数(LOI)测试等方法,测试MWCNTs/PS、MWCNTs/nano-TiO2/PS复合材料的阻燃性能和热稳定性;利用扫描电镜、傅立叶红外光谱法研究复合材料的微观形态结构.研究表明:少量的MWCNTs可提高PS的阻燃性能,混合酸溶液处理的MWCNTs对PS的阻燃改性效果比未处理的MWCNTs要好;当MWCNTs添加量达到3.0Wt%时,该复合材料的氧指数达到22,可以较大地减少燃烧熔融滴落;MWCNTs(1.0Wt%)/nano-TiO2(5.0Wt%)/PS复合材料的氧指数达到23,说明MWCNTs与nano-TiO2具有协同阻燃效果.  相似文献   

3.
通过一锅法原位合成了SiO_2纳米粒子改性可膨胀石墨,与未被改性的可膨胀石墨(EG)相比,改性可膨胀石墨(MEG)仍然保留了其片层状结构,石墨片层表面附集了大量的SiO_2纳米粒子。将MEG应用于阻燃ABS,通过垂直燃烧测试(UL 94)、极限氧指数测试(LOI)和力学性能测试研究了MEG对ABS阻燃材料的燃烧特性和力学性能的影响。结果表明,当MEG的质量分数为20%时,ABS/MEG20阻燃复合材料的UL 94水平达V-0级,LOI值达到25.2%,而与此作为对比的ABS/EG20阻燃复合材料持续燃烧,未能通过UL 94测试。增韧剂的添加较大幅度地提高了阻燃ABS复合材料的力学韧性,当增韧剂的质量分数为4%时,ABS/MEG20的力学冲击冲击强度由增韧前的6.0 k J/m~2提高到12.7 k J/m~2,另一方面,复合材料仍保持其优异的阻燃性能;与纯ABS材料相比,阻燃ABS复合材料高温时的热稳定性提高,高温时的残炭量增加。  相似文献   

4.
采用紫外光接枝的方法,将甲基丙烯酸缩水甘油酯(GMA)接枝到苎麻织物上,再胺化、磷酸化,对苎麻织物进行阻燃改性,并利用手糊成型的方法制备了阻燃改性苎麻增强环氧树脂(EP)复合材料。用拉伸试验机和氧指数仪等研究了复合材料的力学性能和阻燃性能,用扫描电子显微镜观察了复合材料的拉伸断面形貌和燃烧残炭,并讨论了不同GMA接枝率对复合材料力学性能和阻燃性能的影响。结果表明,阻燃改性的苎麻织物与EP之间的粘结效果明显改善,提高了复合材料的力学性能和阻燃性能,接枝45%GMA的苎麻胺化、磷酸化后与EP复合,可使复合材料的极限氧指数达到25.6%。  相似文献   

5.
以乙烯-乙酸乙烯酯共聚物(EVA)为基体树脂,大分子磷氮复合阻燃剂(NPS)为主阻燃剂,以多壁碳纳米管(MWCNTs)为协效剂,制备了低烟无卤阻燃EVA复合材料。采用极限氧指数(LOI)、热重分析(TGA)、扫描电镜(SEM)、力学性能和动态热力学性能(DMA)测试等手段对复合材料进行测定,重点考察了MWCNTs对膨胀阻燃EVA体系的影响,探讨了其作用机理。结果表明:MWCNTs对阻燃EVA体系具有很好的协同效应;MWCNTs的加入提高了膨胀炭层在高温时的热稳定性,增加了高温时的残炭量;MWCNTs可以改善膨胀炭层的形貌,提高炭层的隔热性能;0.5%的MWCNTs与29.5%的NPS复配,试样的LOI达到33.6%,拉伸强度达到12.37 MPa;MWCNTs用量在3%以内时,体系仍能保持较好的电绝缘性。  相似文献   

6.
木质素与三聚氰胺反应制得改性木质素,再用改性木质素与市售阻燃剂XDP反应,制备出"三位一体"阻燃剂,以改善XDP阻燃剂在丙烯腈-丁二烯-苯乙烯共聚物(ABS)中的耐热耐燃性。改性阻燃剂与ABS复配通过挤出造粒、注塑制备含有不同比例阻燃剂的复合材料。利用红外光谱(FTIR)、X射线光电子能谱(XPS)对制备出的改性阻燃剂进行表征,利用热失重/热失重速率(TG/DTG)、扫描电镜(SEM)、冲击强度、极限氧指数(LOI)等对复合材料的耐燃耐热性能与力学性能进行探究。结果表明,用木质素改性后的"三位一体"阻燃剂不仅可增加ABS残炭炭层的致密性和连续性,提高ABS的残炭率,并且在提高ABS阻燃性能的情况下,对ABS的力学性能影响不大。  相似文献   

7.
张泽  贾垚  崔永岩 《中国塑料》2021,35(12):45-50
采用熔融共混法,以二乙基次膦酸铝(ADP)为主阻燃剂,聚磷酸铵(APP)为协效阻燃剂,对丙烯腈?丁二烯?苯乙烯共聚物(ABS)实现了良好的阻燃抑烟改性。利用极限氧指数测定仪、烟密度测试箱和锥形量热测试仪对复合材料的燃烧性能进行了测试,通过扫描电子显微镜、差示扫描量热仪等分析表征了复合材料的微观结构和热性能。结果表明,当ABS/ADP/APP质量比为100∶16∶4时,复合材料的极限氧指数(LOI)可提高到29 %,烟密度等级下降到68.5,火点指数(FPI值)提高到0.215 s/(kW·m-2);复合材料在燃烧过程中会分解产生磷氧自由基,抑制基体燃烧的链式反应,并在材料表面形成大量细小空穴、膨胀疏松的炭层,取得了气相阻燃和凝聚相阻燃之间的良好协效。  相似文献   

8.
用熔融共混法制备了长玻纤增强聚丙烯/红磷/多壁碳纳米管(LGFPP/RP/MWCNTs)复合材料。氧指数(OI)测试结果表明:MWCNTs的加入提高了LGFPP/RP阻燃体系的阻燃性能。在LGFPP/RP阻燃体系中添加1%的MWCNTs后,LGFPP/RP/MWCNTs复合材料的OI提高到23.4%。热失重分析(TGA)研究表明:在氮气气氛下MWCNTs提高了LGFPP/RP阻燃体系的热稳定性。1%的MWNTs可使LGFPP/RP阻燃体系的热分解起始温度提高12.4℃。力学性能测试结果表明:MWCNTs的加入提高了LGFPP/RP阻燃体系的力学性能。在LGFPP/RP阻燃体系中添加1%的MWNTs后,LGFPP/RP/MWCNTs复合材料的拉伸强度、弯曲强度和冲击强度分别提高了3.2%、12.3%和7.7%。  相似文献   

9.
采用双邻苯二甲腈树脂(BAPh)对环氧树脂E-44(EP)进行改性,同时制备了BAPh/EP/玻纤复合材料。采用示差扫描量热仪,热重分析,力学性能测试及氧指数仪研究了改性树脂的热性能、力学性能及阻燃性能,并对BAPh/EP/玻纤复合材料的力学性能进行了表征。结果表明,当BAPh质量分数达到50%时,改性树脂固化物在空气中的起始分解温度达到377.6℃,比纯环氧提高74.3℃,氧指数达到34.5%,复合材料的弯曲性能指标达到最大,添加双邻苯二甲腈后环氧树脂的耐热性、力学性能和阻燃性能得到了明显改善。  相似文献   

10.
采用4种经过不同表面处理剂改性的有机层状硅酸盐(Clay)与膨胀型阻燃剂复配阻燃聚乳酸(PLA)。通过熔融共混的方法制备阻燃PLA纳米复合材料,并通过极限氧指数、垂直燃烧、锥形量热测试和热失重分析对材料阻燃性能和热稳定性进行了研究,通过扫描电子显微镜对残炭形貌进行了分析。结果表明,加入经硅氧烷表面处理的Clay的PLA具有最好的热稳定性和阻燃性能;与不加Clay的阻燃PLA复合材料相比,极限氧指数从30.6 %提高至34.2 %,并且通过垂直燃烧UL 94 V-0级别,热释放速率峰值从283 kW/m2下降至199 kW/m2,下降幅度为30 %;残炭形貌分析结果显示,加入硅氧烷表面处理之后的Clay能够使残炭更加完整致密,从而提高了材料的阻燃性能。  相似文献   

11.
通过原位聚合法制备了以环氧树脂(EP)为壁材,三聚氰胺聚磷酸盐(MPP)为芯材的环氧包覆三聚氰胺聚磷酸盐(EPMPP),将其与二乙基次磷酸铝(ADP)复配后制备了阻燃乙烯-醋酸乙烯酯共聚物(EVA)复合材料,并对阻燃材料材料进行了极限氧指数、UL 94垂直燃烧测试以及热失重分析表征。结果表明,当ADP与EPMPP质量比为2:1、添加量为40%(质量分数,下同)时,阻燃复合材料的极限氧指数达到最高值31%,UL 94垂直燃烧测试达V-0级;EVA/ADP/EPMPP阻燃复合材料的初始分解温度为303℃,850℃时残炭量为18%,较EVA/ADP/MPP阻燃复合材料有较大幅度的提高。  相似文献   

12.
《塑料科技》2015,(6):89-93
以新型成炭剂聚对苯二甲酰乙二胺(PETA)和聚磷酸铵(APP)复配制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/APP/PETA复合材料,通过极限氧指数法和垂直燃烧法表征了复合材料的阻燃性能,通过热失重分析仪(TGA)和扫描电镜(SEM)分析了复合材料的热稳定性能和残炭表面形貌。结果表明:APP与PETA复配(IFR)后可以极大地提高EVA的阻燃性能,EVA/APP/PETA(质量比70/25/5)体系极限氧指数(LOI)达到39%,较纯EVA提高了88.4%,UL 94测试为V-0级别;EVA/APP/PETA复合材料在600℃下的残炭率达到了42%,较纯EVA残炭率高37%。SEM表明:30%IFR(APP与PETA质量比5:1)的加入提高了样品残炭表面致密性。  相似文献   

13.
以二乙基次磷酸铝(DEAP),三聚氰胺磷酸盐(MP)和硼酸锌(ZB)为阻燃体系对聚酰胺11(PA11)进行阻燃改性。通过极限氧指数、垂直燃烧测试(UL 94)和锥形量热仪以及热失重分析研究了阻燃体系构成对复合材料阻燃性能与热稳定性的影响,采用红外光谱对残炭成分进行分析。结果表明,添加20 % DEAP时,复合材料的极限氧指数达到28 %,UL 94 测试达到V-2级, 添加13 %DEAP/7 %MP和12.5 %DEAP/7 %MP/0.5 %ZB时,复合材料的极限氧指数可达到29 %,UL 94测试达到V-1级;DEAP对PA11的热释放速率及总热释放量有显著的控制作用,MP和ZB的加入进一步提升其阻燃性能;DEAP/MP/ZB协同使用时残炭的膨胀性、强度及致密性最好;ZB的加入使残炭中的羟基含量增加,应该是ZB的分解所致。  相似文献   

14.
宋剑峰  李曼  梁小良  粟海锋 《化工进展》2018,37(11):4412-4418
以聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)复配的膨胀型阻燃体系(IFR)为主要阻燃剂,表面改性后的赤泥(Ti-MRM)作为协效剂阻燃聚乙烯(PE),采用熔融共混法制备PE基阻燃复合材料(PE/IFR-Ti-MRM)。通过热重分析仪(TGA)、垂直燃烧仪(UL-94)、极限氧指数测定仪(LOI)及扫描电镜(SEM)等对其热氧稳定性、燃烧等级、阻燃性能和残炭形貌进行了表征与分析。结果表明:加入改性赤泥的PE/IFR-Ti-MRM复合材料形成的炭层更加致密和连续,当最优配比时,复合材料的极限氧指数达到32.2,燃烧等级达到V-0级;而PE/IFR阻燃复合材料的极限氧指数只能达到27.5,燃烧等级为V-2级。  相似文献   

15.
将新型无羟基低聚三嗪衍生物(CFA)作为成炭剂与聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR),并研究了不同含量和比例的IFR对动态硫化热塑性弹性体(TPV)阻燃性能、热稳定性能、流变性能和力学性能的影响。结果表明:IFR对TPV有良好的阻燃作用,当IFR(CFA与APP质量比1∶3)质量分数为40%时,TPV/IFR复合材料具有最佳的阻燃性能,极限氧指数为26.4%,且垂直燃烧测试等级为V-0级;TPV/IFR复合材料的热释放速率峰值与总热释放量均大幅降低;IFR能促使TPV/IFR复合材料形成更多的残炭,积分程序分解温度和表观活化能明显增加,材料的热稳定性显著提高;TPV/IFR复合材料虽然加工性能略有降低,但具有优异的力学性能,能满足加工使用要求。  相似文献   

16.
采用浸渍法制备了柠檬酸改性的β型分子筛(N-β)。红外光谱测试表明,柠檬酸对β型分子筛具有补铝作用,可使其骨架铝含量增加。利用热重分析、氧指数测试、扫描电镜分析等手段探讨了N-β对丙烯腈-丁二烯-苯乙烯共聚物(ABS) /膨胀型阻燃剂(IFR)复合材料热失重行为、阻燃性能、微观结构及力学、加工性能的影响。结果表明,N-β在含量较低时与IFR具有较好的阻燃协同作用,可促进IFR高温成炭,形成稳定、连续、致密的炭层结构。当N-β量为2%(质量分数,下同)时,ABS/IFR复合材料的极限氧指数为31.3%,残炭量为24. 86%。同时,随着N-β含量的增加,复合材料的冲击强度、拉伸强度呈现出先升后降的趋势。  相似文献   

17.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为阻燃剂,制备了聚乳酸/竹纤维(PLA/BF)阻燃复合材料,并通过极限氧指数(LOI)测试、热重分析、力学性能测试和扫描电镜(SEM)分析等手段考察了阻燃剂DOPO对复合材料阻燃性能、热降解行为及力学性能的影响。结果表明:DOPO对PLA/BF复合材料具有良好的阻燃效果。其中当DOPO用量达到4%时,复合材料的LOI由DOPO添加前的22.5%增至29.5%,材料的阻燃性能得到明显提升;同时,复合材料的热稳定性也明显提高,其最大热分解温度由331℃升至357℃,DTG曲线面积明显减小。  相似文献   

18.
《塑料》2019,(5)
采用固相剪切碾磨技术制备了由石墨烯(GE)和低聚倍半硅氧烷(POSS)组成的复合协效剂协效膨胀阻燃聚丙烯(PP)复合材料。采用极限氧指数(LOI)、UL94垂直燃烧、微型量热(MCC)、扫描电镜(SEM)、力学测试等方法,研究了阻燃PP复合材料的结构与性能。结果表明,GE明显提高了阻燃PP材料的阻燃性能。与PP/RMAPP/POSS(80/19/1)相比,PP/RMAPP/POSS/GE(80/18. 8/1/0. 2)的最大热释放速率(PHRR)降低了33%,垂直燃烧水平提高至UL-94 V0级。此外,当GE添加量为0. 2%时,与未碾磨PP阻燃材料相比,碾磨制备的PP阻燃材料的极限氧指数由27. 0%提高至29. 5%,拉伸强度由29. 2 MPa提高至33. 5 MPa,因此,磨盘碾磨强大的三维剪切力场作用,可以改善阻燃剂在PP基体中的分散性和界面相容性,提高PP阻燃材料的阻燃性能和力学性能。  相似文献   

19.
《塑料》2015,(1)
以聚乳酸为基体,红麻为增强材料,PX-220、FB88#为阻燃剂,通过熔融共混制得抗熔滴阻燃聚乳酸复合材料。通过电子拉力机、扫描电镜、热重、极限氧指数、拉曼光谱等分析手段研究了复合材料的力学、耐热和阻燃性能。结果表明:P6具有较好的力学性能、耐热性能和阻燃性能,且燃烧后成炭显著,无熔滴。  相似文献   

20.
通过磷系阻燃剂(FR)阻燃聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)共混物,制备阻燃材料,研究磷系阻燃剂对PC/ABS阻燃复合材料的燃烧行为和热稳定性的影响。通过UL94垂直燃烧测试、极限氧指数(LOI)测试、马弗炉测试等表征方法,对PC/ABS阻燃复合材料的燃烧行为进了系统的研究。结果表明,磷系阻燃添加量为15%时,PC/ABS阻燃复合材料能够达到UL94 V-2级,LOI的值为29.3%,高温时的残炭量由11.2%提高到20.8%。其中FR阻燃剂在高温下可以产生磷酸酯类黏稠难燃物质,能够有效地起到凝聚相阻燃作用,提高了PC/ABS共混物材料的阻燃性能,表现出良好的阻燃效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号