首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light scattering by kaolinite dust samples at 532 nm is studied using a newly developed laboratory apparatus. During the experiments, dust samples are suspended in water, aerosolized by a nebulizer, and then injected into the scattering zone, with or without going through a diffusion drier, to generate either dried dust particles or water droplets with dust inclusions. The light source is a dual wavelength (532 and 1064 nm) diode-pumped solid state laser. Light scattered by an ensemble of particles is collected by a charge-coupled device (CCD) camera, which is mounted on the rotating arm of a stepper motor. The stepper motor rotates the CCD to cover the scattering angle range from 3° to 177°. Polarized scattering light is measured for the horizontally and vertically polarized incident light. The apparatus is calibrated, using pure water droplets as the scattering media. The response function with respect to the scattering angle is obtained by comparing the measurements with Lorenz–Mie calculations and then used in the later data analysis. Measurements show that the backward scattering features of the water droplets are smoothened due to their dust inclusions. Numerical simulations and measurements are extensively compared and discussed. It is found that the Lorenz–Mie theory is inadequate to reproduce the scattering phase functions of either dust particles or water droplets with dust inclusions. A nonspherical aggregate model is applied to simulate the scattering phase functions. The simulation is able to reproduce the overall scattering features; however, substantial discrepancies still exist due to uncertainties in particle shape and refractive index.

Copyright © 2018 American Association for Aerosol Research  相似文献   


2.
Mineral dust is the second largest emission by mass into the atmosphere. Aerosol particles affect the radiative forcing budget by directly scattering and absorbing light, acting as cloud condensation and ice nuclei, and by providing surfaces for heterogeneous chemistry. Factors that affect how the particles scatter and absorb light include their composition, shape, size, and concentration. In this study, we characterize the most common components of mineral dust, quartz, and aluminosilicate clay minerals. In addition, we apply our results from calcite, feldspars, quartz, and aluminosilicate clay minerals to model the optical properties of Arizona test dust (ATD). We use cavity ring-down spectroscopy to measure the extinction cross sections of size-selected particles, electron microscopy to characterize the size selection, and Mie theory as well as the discrete dipole approximation as models. For quartz, the extinction cross sections can be well modeled assuming the particles are spheroids or spheres. For clay minerals, even spheroids fail to model the extinction cross sections, potentially due to orientation effects and lift forces in our flow system. In addition, aluminosilicate clay minerals experience weak size selectivity in the differential mobility analyzer. For ATD, the extinction cross sections are best modeled by treating each component of the mixture separately in terms of shape and size distribution. Through the application to ATD, our study outlines the procedure that can be used to model the optical properties of complex airborne dust mixtures.

Copyright © 2016 American Association for Aerosol Research  相似文献   


3.
The direct and indirect radiative impact of naturally produced dust particles influences climate from regional to global scale, introducing one of the largest uncertainties in future climate projections. By absorbing and scattering solar radiation, aerosols reduce the amount of energy reaching the earth's surface, while at the same time they enhance the greenhouse effect by absorbing and emitting longwave radiation (direct dust effect). In this study an attempt is made to quantify the feedback of this energy redistribution in the atmospheric water content in the Arabian Peninsula (one of the main sources of atmospheric mineral dust globally). To this end the SKIRON/dust modeling system was used for 2 years (2014–2015) and two sets of simulations were performed: in the first one the dust particles exert no feedback on the radiative transfer due to dust particles (control run), while in the second set dust interacts with radiation (direct radiative effect). Both simulations have been evaluated in their ability to describe the impacts on surface humidity, with the simulations including the dust feedback showing improved results. These direct feedbacks lead to an increase in the mass of water in the atmospheric column that can reach a maximum daily average of 0.5 g per kg of dry air. Water vapor is the most important greenhouse gas and through this process dust enhances its own greenhouse effect, further increasing the surface temperature and humidity, making life difficult for people living in an already harsh desert climate.

© 2018 American Association for Aerosol Research  相似文献   


4.
A new polar nephelometer (PN) has been developed to measure simultaneously the scattering angular distributions from 11.7° to 168.3° for individual particles in planes parallel and perpendicular to the polarization of the incident laser beam. Each detection plane had 21 silicon photodiode detectors to detect scattered light at a rate of 100 Hz. Laboratory experiments to validate the performance of the instrument were conducted using nearly mono-disperse spherical particles (polystyrene latex [PSL] and nigrosine) and nonspherical particles (sodium chloride [NaCl] and soot). The observed scattering angular distributions for individual PSL particles were in good agreement with the results of simulations based on Mie theory. Complex refractive index values for nigrosine particles were determined by comparing the observed scattering angular distributions with the results of simulations. Clear differences between the measured scattering angular distributions and the results of simulations based on Mie theory assuming spherical particles were observed for NaCl particles (mobility diameters of 500 and 700 nm) and propane soot particles (mobility diameters of 300, 500, and 700 nm). These results are reasonably explained by theoretical predictions. We also conducted initial observations of ambient particles in Nagoya city, Japan. Scattering angular distributions for particles with a mobility diameter of 500 nm and an average effective density of 1.4 or 0.3 g/cm3, which were selected with a combination of differential mobility analyzer and aerosol mass particle analyzer, were measured using the PN. As results, scattering angular distributions for nearly spherical inorganic and organic particles with an average effective density of around 1.4 g/cm3 were found to be distinguishable from nonspherical particles with an average effective density of around 0.3 g/cm3. This study has demonstrated that our PN has the potential to distinguish between spherical and nonspherical particles.

Copyright © 2016 American Association for Aerosol Research  相似文献   


5.
The characteristics of fugitive dust emitted from vehicles traveling on unpaved dirt roads were measured using a suite of instruments including a real-time fugitive dust sampler. The fugitive dust sampler is formed from a combination of a large particle inlet and an optical particle spectrometer that reports particle sizes from 6 to 75 µm. The large particle inlet permits the sampling of particles up to 75 µm with only a moderate dependence of sampling efficiency on wind-speed. Measurements made with the sampler showed that particles as large as ~50 µm were suspended from vehicular movement on the dirt roads, with the mode of the fugitive dust particle number size distribution ~2 µm, while the mass distribution mode was ~7 µm. A comparison of the fugitive dust sampler measurements with those made using standard PM instruments showed that the conventional instruments have a wind-direction bias that can result in under-sampling of large particles. The current measurements suggest that particles suspended from dirt roadways are of importance for local air quality within the near-road environment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


6.
A rectangular slit micro-aerodynamic-lens (μADL) aerosol concentrator operating at atmospheric pressure has been developed. A single stage version has shown concentration ratios of up to 40:1 for 1 μm aerosol particles while particles larger than 2 μm can be concentrated by more than 100:1 in a single stage. The design of this device has been guided by unsteady 3D CFD modeling using detached eddy simulations (DES), and has been validated experimentally using polystyrene spheres and salt crystals of known aerodynamic diameters. The pressure drop in the device does not exceed 1.5 kPa in the major flow and 0.3 kPa in the minor flow at a total flow of 10 slpm.

Copyright 2014 American Association for Aerosol Research  相似文献   


7.
Particles deposited on indoor surfaces may be resuspended and become airborne when disturbed by intensive jets. Depending on the intended purpose, the resuspension of deposited particles may be minimized or promoted. This investigation experimentally measured the resuspension of Arizona test dusts (ATDs) after a jet impingement. The simulating pulsed jets were created by a tube using compressed nitrogen gas. The jets were released into the test section in a wind tunnel that was cleaned by high-efficiency particulate air (HEPA) filters. The particle resuspension was evaluated by the dust-removal zone shapes on particle-laden plates, total dust-removal mass, and the number of airborne particles. The effects of the jet impingement heights, surface dust loads, and particle-laden plate surface roughness on particle resuspension were examined. This study revealed that sparsely deposited dusts indoors are more difficult to resuspend by jets than are densely deposited dusts. The jet impingement to a surface whose roughness is comparable to the particle diameters may cause severer airborne particle exposure than to surfaces with extremely small or large roughness values. For a high surface dust load, there is an optimal jet impingement height that can resuspend the maximum amount of the deposited dusts.

Copyright © 2016 American Association for Aerosol Research  相似文献   


8.
Mineral dust is the second largest atmospheric emission by mass and one of the least understood sources. The shape of the particles depends on their composition and has implications for particle optical properties and reactive surface area. Mineral dust particles are often approximated as spheroids to model their optical properties. In this study, scanning electron microscopy (SEM) is used to measure the aspect ratios of calcite, quartz, NX-illite, kaolinite (KGa-1b and KGa-2), and montmorillonite (STx-1b and SWy-2). In addition to traditional SEM images of the top of the particles, the SEM substrates are oriented approximately normal to the electron beam in order to image the side of the particles. In this manner, aspect ratios for the top and side orientation of the particles are determined. Calcite particles have an aspect ratio of approximately 1.3 in both orientations, while quartz particles have an aspect ratio of 1.38 in the top orientation and 1.64 in the side orientation. The clay minerals studied all exhibited plate-like structures with aspect ratios of 1.35 to 1.44 for the top orientation and 4.80 to 9.14 for the side orientation. These values are used to estimate the specific surface areas (SSAs) of the minerals, which are compared to Brunauer-Emmett-Teller (BET) surface area measurements. Through this study, we present a simple method for determining the aspect ratios of aerosolized samples, rather than relying on literature values of model systems. As a result, this technique should provide a better method for determining the optical properties of mineral dust particles.

Copyright 2014 American Association for Aerosol Research  相似文献   


9.
Ice nucleating particles (INP) initiate heterogeneous ice nucleation in mixed-phase clouds, influencing cloud phase and onset temperatures for ice formation. Determination of particle types contributing to atmospheric INP populations requires isolation of the relatively rare INP from a total particle sample, typically followed by time-consuming single-particle characterization. We propose a method to estimate the contributions of light-absorbing, primarily refractory black carbon (rBC), particles to INP populations by selectively removing them prior to determination of INP concentrations. Absorbing particles are heated to their vaporization temperature using laser induced incandescence in a single particle soot photometer (SP2) and the change in INP number concentrations, compared to unheated samples, is assessed downstream in the CSU Continuous Flow Diffusion Chamber (CFDC). We tested this approach in the laboratory using strongly-absorbing and nonabsorbing aerosol types to confirm effective removal of rBC INP and to explore the impact of the processing on non-light-absorbing INP. An INP-active rBC particle type was efficiently removed, while nonabsorbing kaolinite and a soil-based INP were not affected by laser exposure. Results for the products of wiregrass combustion indicated that absorbing particles, primarily rBC, accounted for about 40% of all INP, consistent with electron microscopy of INP emitted during prescribed burns of this fuel type. However, kaolinite internally mixed with rBC exhibited reduced activity after passing through the SP2, suggesting that the validity of the method for realistic internal mixtures needs additional research. The sensitivity of the CFDC presently limits applicability of the method to relatively high INP number concentration samples.

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
Field studies of dry deposition usually measure dust accumulation over periods of days or weeks. However, long measurement periods obscure the effects of meteorological conditions on the deposition rate. Previously we developed an “outdoor soiling microscope” (OSM) in order to measure dust deposition and detachment every 10 min in the field. In this study a greased/ungreased pair of OSMs was deployed for 51 days in the desert climate of Doha, Qatar. Stepwise regression analysis was performed to quantify the explanatory power of meteorological parameters on dust deposition and detachment rates. It was found that wind speed dominated deposition and rebound of dust particles, and produced a distinctive “threshold” response in deposition. The dry deposition results were highly consistent with a model by Kim et al. (2000) derived from outdoor experiments. By comparison, relative humidity and particulate matter concentration had less influence on dust flux rates.

Copyright © 2018 American Association for Aerosol Research  相似文献   


11.
The ability of atmospheric particles to absorb water has extensive climate, atmospheric chemistry, and health implications, and considerable effort has gone into determining relationships between particle composition and hygroscopicity. Parallel techniques, in which co-located composition and hygroscopicity measurements are combined to infer composition-hygroscopicity relationships, may not detect the influence of external mixtures. Previous in-line measurements have been limited to single-particle composition or a limited analyte range, and are often non-quantitative and/or offline. Here, we present for the first time in-series, online, quantitative hygroscopicity-composition measurements using a Brechtel Manufacturing, Inc. Hybrid Tandem Differential Mobility Analyzer and an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This technique is first verified using laboratory-generated external particle mixtures, then extended to ambient measurements at a seaside sampling side at the Hong Kong University of Science and Technology. The technique successfully separated laboratory-generated particles of differing hygroscopicities and showed promise for atmospheric particles, though high mass attenuation endemic to the HTDMA dual size selection limits application to environments with at least ~14–41 μg/m3 of particulate mass, depending on composition.

Copyright © 2017 American Association for Aerosol Research  相似文献   


12.
We describe a new method for focusing and concentrating a stream of moving micron-sized aerosol particles in air. The focusing and concentrating process is carried out by the combined drag force and optical force that is generated by a double-layer co-axial nozzle and a focused doughnut-shaped hollow laser beam, respectively. This method should supply a new tool for aerosol science and related research.

Copyright © 2018 American Association for Aerosol Research  相似文献   


13.
The aerodynamic lens system of the Aerodyne Aerosol Mass Spectrometer (AMS) was analyzed using the Aerodynamic Lens Calculator. Using this tool, key loss mechanisms were identified, and a new lens design that can extend the transmission of particulate matter up to 2.5 μm in diameter (PM2.5) was proposed. The new lens was fabricated and experimentally characterized. Test results indicate that this modification to the AMS lens can significantly improve the transmission of large sized particles, successfully achieving a high transmission efficiency up to PM2.5 range.

© 2016 American Association for Aerosol Research  相似文献   


14.
Adhesion between dust particles and indoor surfaces can lead to negative effects on human health by triggering allergic and asthmatic reactions. In this study, adhesion forces of indoor office dust and activated carbon (AC, as model soot) particles to four common indoor materials (Al, Cu, PVC, and glass) were measured by colloidal probe atomic force microscopy. Chemical analysis of office dust shows it is largely made up of oxygenated hydrophilic organic carbon material. Both metal surfaces experienced weaker dust and AC adhesion than PVC or glass by up to 2–12 times lower primarily due to the presence of attractive electrostatic forces in the latter two (non-conducting) surfaces. Dust and AC adhesion were also highly sensitive to surface roughness, with an inverse relationship between adhesion force and roughness due to the reduction in contact area between the particle and a rougher material surface. Capillary forces play only a minor or negligible role in dust and AC surface adhesion. Adhesion models utilizing a purely van der Waals approach such as the simple Hamaker model and modified Rumpf's model are insufficient to determine the actual particle-surface contact radii and requires the accounting of non-van der Waals forces to adhesion.

Copyright 2014 American Association for Aerosol Research  相似文献   


15.
In situ atmospheric aerosol measurements have been performed from a Manta unmanned aircraft system (UAS) using recently developed miniaturized aerosol instruments. Flights were conducted up to an altitude of 3000 m (AMSL) during spring 2015 in Ny-Ålesund, Svalbard, Norway. We use these flights to demonstrate a practical set of miniaturized instruments that can be deployed onboard small UASs and can provide valuable information on ambient aerosol. Measured properties include size-resolved particle number concentrations, aerosol absorption coefficient, relative humidity, and direct sun intensity. From these parameters, it is possible to derive a comprehensive set of aerosol optical properties: aerosol optical depth, single scattering albedo, and asymmetry parameter. The combination of instruments also allows us to determine the aerosol hygroscopicity.

Copyright © 2017 American Association for Aerosol Research  相似文献   


16.
Aerosols are important atmospheric constituents as they impact the Earth's energy balance and climate. An analysis of the impact of aerosols depends on the detailed knowledge of aerosol optical properties. However, there is a lack of refractive index data for atmospherically relevant organic compounds in the infrared (IR) region which complicates the quantitative estimation of the aerosol influence on the radiative balance. In this study, we investigate the optical properties of atmospherically relevant carboxylic acids and HUmic-LIke Substances (HULIS) proxies. Aerosol size distributions are measured simultaneously with Fourier transform infrared (FTIR) extinction spectra to calculate the complex refractive index. Scanning electron microscopy (SEM) images are also collected to investigate particle shape. Analysis of SEM images shows evidence for agglomeration in some cases. The experimentally measured IR resonances do not appear to be highly sensitive to agglomeration effects. However, there is an increase in the scattering efficiency at shorter wavelengths as the result of larger overall particle size of the agglomerates. Refractive indices are retrieved from the IR extinction spectra of organic acids and HULIS proxies. Mie simulation results confirm the quality of the retrieved optical constants. Interestingly, the optical constants determined for the acids are in agreement with the published data for fire smoke plumes.

Copyright 2014 American Association for Aerosol Research  相似文献   


17.
We suggest a two-dimensional model of adsorption of trace atmospheric gases by mineral dust particles with origin from desert soils. The model is based on the application of theory of turbulent diffusion in the atmospheric boundary layer (ABL) in conjunction with the model of gas adsorption by porous solid particles. The numerical model is formulated using parameterizations based on eolian (by wind) dust emission experiments. The eolian field experiments were performed at a dust source (loess soil in Northern Negev, Israel) using a portable boundary layer wind tunnel to determine the emitted particulate matter (PM) fluxes for different wind speeds and varying soil conditions. The numerical analysis is performed for the adsorption of gas-phase HNO3 by dust PM. We determined numerically concentration distributions of the atmospheric dust PM, and trace gas using shear velocity and emitted dust flux from the soils employed in the experiments. Analysis was performed for the case of neutral and slightly stable stratification of ABL typical for dust storm events in the East Mediterranean. The numerical analysis showed that during dust events the slightly stable atmosphere is characterized by higher concentration of PM10 in the surface layer than the neutrally stable atmosphere. It is found that in the case of neutral stratification as well as for stable atmospheric stratification the concentration of nitric acid HNO3 strongly depends on concentration of atmospheric dust particles. The developed model enhances our capacity of quantification of atmospheric dust effects in climate models as well as health risk assessment.

Copyright © 2019 American Association for Aerosol Research  相似文献   


18.
Primary biological aerosol particles (PBAP) such as pollen and fungal spores can induce allergenic responses and affect health in general. Conditions such as allergic rhinitis (hay fever) and asthma have been related to pollen concentrations. Likewise some pollen have been shown to induce ice nucleation and cloud condensation at higher temperatures than those associated with some chemical species, thereby affecting planet Earth's albedo and overall radiative balance. Hence, the near real-time (on-line) monitoring of airborne pollen and other PBAP using a variety of spectroscopic and light scattering techniques represents an area of growing development and consequence.

In this study, two separate field campaigns (one at a rural site in Ireland and the other at an urbanized location in Germany) were performed to detect and quantify pollen releases using a novel on-line fluorescence spectrometer (WIBS-4). The results were compared with results obtained using more traditional Hirst-type impactors. Size, “shape,” and fluorescence characteristics of ambient particles were used to determine the concentrations and identity of the PBAP likely to be pollen grains.

The concentration results obtained for both methodologies at both the Irish and German sites correlated very well, with R 2 values >0.9 determined for both campaigns. Furthermore, the sizing data available from the WIBS-4 approach employed in Ireland indicated that pollen grains can be identified in appropriate conditions. WIBS-4 measurements of Yew pollen both in the laboratory and at the rural site indicated almost identical size ranges of 25 to 27 μm. Yew pollen is generally reported to be in this range, but the measurements reported here are the first of their type providing data on the size of in-flight Yew pollen.

Copyright 2014 American Association for Aerosol Research  相似文献   


19.
Results of a numerical study of the RespiCon sampler performance in the calm air are presented. The air flow is described by the Navier–Stokes equations of axisymmetric stationary viscous flow of incompressible fluid that are numerically integrated by the computational fluid dynamics (CFD) software FLUENT. The collection efficiencies of RespiCon impactor stages agree quite well with experimental data and curves of the European standards for the thoracic and respirable dust fractions. The aspiration efficiencies derived from the numerical model overestimate the experimental data in the range of particle sizes of 10 μm < dp < 40 μm; however, they correctly predict the value of maximal size of aspirated particles. A new design of the RespiCon sampler with a higher volume flow rate was developed.

Copyright 2014 American Association for Aerosol Research  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号