首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Drying Technology》2013,31(9):1843-1854
ABSTRACT

Drying of Poly(vinyl acetate) latex films has wide application in the industries of synthetic fibers, adhesives, coatings, paints, etc. In this investigation, drying of Poly(vinyl acetate) latex film was studied experimentally in a drying tunnel where the air velocity and temperature were controlled. The water evaporation rate was obtained by weighing the latex film during the drying process. The weight loss of latex was measured for different polymer concentrations, film thicknesses, drying areas, temperatures, and air velocities. Results emphasize the important role of these parameters on the relative water transport from the latex film. Increasing air velocity and temperature leads to a significant increase of the weight loss of latex and drying rate. Changing other parameters affects only the rate of weight loss but not the constant drying rate.  相似文献   

2.
《Drying Technology》2013,31(8):1667-1679
Abstract

The influence of air temperature, velocity, and humidity during convective drying of two different sludges (A and B) is investigated through a 33 factorial design. For sludge A, a constant drying flux period is observed, while sludge B is characterized by a long decreasing drying flux phase. A sensitivity analysis shows that temperature is the main operating parameter affecting the drying kinetics. Mass and heat transfer coefficients as well as water evaporation capacities are calculated from drying curves. Transfer coefficients are related to operating conditions through dimensionless relations. For both sludges, a linear relation is found between water evaporation capacity and the maximal measured drying flux.  相似文献   

3.
ABSTRACT

Colloidal silica has been used frequently as a model material of drying in the past two decades. Several models of single droplet drying have been validated against the sole experimental evidence by Ne?i? and Vodnik (Kinetics of droplet evaporation. Chemical Engineering Science 1991, 46(2), 527–537), in which relatively scattered experimental data on drying of single droplet of colloidal silica were provided. Due to the importance of this sort of data, the drying of single droplet of colloidal silica was determined more accurately under more extensive conditions in this work. The effect of air temperature on the drying of single droplet of colloidal silica was probed as well as the evolution of particle morphology. The droplet of colloidal silica was found to shrink irregularly during drying due to uneven exposure of droplet surface to air stream. The moisture within the droplet appears to transfer freely to the surface, keeping the surface highly moist. For a large part of drying process, drying of single droplet of colloidal silica is similar to the evaporation of water droplet, which can be predicted well using a simple mathematical model.  相似文献   

4.
Understanding drying physics is a complex task because interactions between phases and variations in thermal properties change over time. In this investigation we used two models to simulate the drying of potatoes slices. Drying kinetics were modeled by both the drying characteristic curve (DCC) method and by a mechanistic approach implemented in COMSOL Multiphysics. The DCC was developed on the basis of experimental data and a referential drying rate, which for potatoes is the maximum evaporation rate during the process. The surface thermal evolution was considered to estimate the drying rate curve and the drying stages. The phenomenological model considers both the transport of free water and water vapor by applying a mechanistic approach. In order to simulate free water transport we took into account the capillary diffusivity term, and to simulate water vapor evacuation we considered the desorption isotherm. Two drying conditions were analyzed, 1.0 and 2.2 m/s of air flow with 60°C and 30% relative humidity (RH). The mechanistic model solves the primary unknown's moisture content, temperature, and dry air density. Both models were compared against experimental data. The simulation correctly describes the drying kinetics for the trial at 2.2 m/s and fails to simulate the phenomena at 1.0 m/s. Two different drying behaviors influenced by air flow speed were identified by following the evolution of surface temperature and mass flux. The dependence of mass flux on the difference in temperature (Tair?Tsurface) shows that the area of exchange is a very important parameter to be considered in simulations, because both linear and nonlinear behaviors are manifested.  相似文献   

5.
Abstract

Equilibrium moisture content isotherms for Spanish hazelnut (Corylus avellana L.) at different temperatures (30°C-80°C) were determined using static gravimetric method. Thin layer drying experiments were done with forced air circulation and were conducted with different operating conditions to determine the drying characteristics of hazelnuts. The effect of air temperature (30°C-70°C), air velocity (0.5 m/s - 2 m/s) and drying bed loading density (50 kg/m2 - 150 kg/m2) on drying of unshelled and shelled hazelnuts was studied. Six mathematical models were used to fit the experimental equilibrium moisture content data, from which the G.A.B. model was found to give the best fit. Diffusion coefficients were determined by fitting experimental thin-layer drying curves to the Fick's diffusion model. Variation of the effective diffusion coefficient with temperature was of the Arrhenius type. The Page equation was found to describe adequately the thin layer drying of hazelnut. Page equation drying parameters k and n were correlated with air temperature and relative humidity.  相似文献   

6.
Abstract

This work evaluated the effect of ultrasonic pretreatment on the production of dehydrated apples (Malus domestica L. var Granny Smith) in a fluidized bed dryer. Cube-shaped apple samples were subjected to ultrasound in an ultrasonic bath and dried in a fluidized bed drier. The experimental design evaluated the effect of ultrasound pretreatment time (0 to 30?min) on the soluble solids loss during pretreatment and on the drying time. The ultrasonic pretreatment was carried out in a bath ultrasound operating at 25?kHz and outputting 55?W/m3 of power density. Distilled water was applied in the pretreatment to produce low-calorie apple cubes. Fluidized bed drying was carried out at 30, 40, and 50?°C. Fick’s law was used to model the drying process and to determine the apparent water diffusivity. The soluble solid loss ranged between 8.7 and 21.2% during the pretreatment, and the apparent water diffusivity during air drying ranged from 1.09?×?10?6 to 2.81?×?10?6 m2/min. Ultrasound pretreatment increased the apparent water diffusivity up to 58%. Apple cubes subjected to 20?min of ultrasound pretreatment and dried at 50?°C presented the highest apparent water diffusivity and dried to achieve a water activity of 0.4 in 100?min.  相似文献   

7.
Abstract

Ventilative drying is an essential drying method to protect natural gas pipeline from corrosion and prevent the formation of hydrate. A mathematical model describing the problem of pipelines drying with dehydrated air is developed based on the fundamental principle of mass, momentum, and species conservation in present work. To enhance the accuracy of the model, a new correlation of the evaporation rate of water in pipeline is introduced by taking interfacial resistance into account. Finite volume method (FVM) is employed to discretize the governing equations with first-order upwind scheme for mass and momentum equations and QUICK scheme for species equations. To reduce calculation load, a new solution strategy of semi-implicit method for Sm-linked equations is proposed to solve the nonlinear algebraic equations after the discretization of mathematical model. The results indicate that average absolute deviation between experimental data and the calculations are 8.8% and 8.2% for two cases, respectively. By analysis of dynamic process of the ventilative drying, it is found that the drying process takes place from the ends toward the center of the pipeline. In addition, the results also demonstrate that the nonuniform distribution of the liquid holdup may reduce the service efficiency of dehydrated air at the late period of drying process. Thus, we suggest that the drying process shifts to soak-test stage when the water vapor at the outlet reaches a minimum set value. Finally, a number of influential factors on the drying process are studied.  相似文献   

8.
ABSTRACT

Drying experiments with single, porous spheres wetted with mixtures of 2- propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2- propanol and water, internal boiling can occur depending on the vapor–liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.  相似文献   

9.
ABSTRACT

Pine sapwood was dried in an air convection kiln at temperatures between 60-80 °C. Temperature and weight measurements were used to calculate the position of the evaporation front beneath the surface. It was assumed that the drying during a first regime is controlled by the heat transfer to the evaporation front until irreducible saturation occurs. Comparisons were made with CT-scanned density pictures of the dry shell formation during initial stages of drying of boards.

The results indicate a receding evaporation front behaviour for sapwood above approximately 40-50% MC when the moisture flux is heat transfer controlled. After that we finally reach a period where bound water diffusion is assumed to control the drying rate.

The heat transfer from the circulating air to the evaporation front controls the migration flux. In many industrial kilns the heating coils therefore have too small heat transfer rates for batches of thin boards and boards with high sapwood content.  相似文献   

10.
A drying technique using a combination of a contact ultrasound apparatus and a hot air dryer is developed to investigate the strengthening effect of contact ultrasound on hot air drying. The effects of drying parameters such as ultrasound power and drying temperature on drying characteristics, effective moisture diffusivity (Deff), microstructure, glass transition temperature (Tg), rehydration ratio, and color difference are discussed. The results show that the application of contact ultrasound causes a significant acceleration of internal mass transfer, and higher ultrasound power applied leads to faster drying rate. The effect of ultrasound power on drying rate decreases along with the reduction of moisture content during drying process. The increase in drying temperature significantly reduces drying time but has a little negative influence on the strengthening effect of ultrasound. Deff values range from 1.0578?×?10?10 to 5.4713?×?10?10?m2/s in contact ultrasound-assisted hot air drying of purple-fleshed sweet potato and increase significantly with an increase in drying temperature as well as ultrasound power. The microstructure of purple-fleshed sweet potato is greatly different at different ultrasound powers during contact ultrasound-assisted hot air drying and shows more microchannels and dilated intercellular spaces in the cross-section of purple-fleshed sweet potato micrographs at higher ultrasound power. Contact ultrasound application during hot air drying could improve the mobility of water and consequently reduce glass transition temperature. Lower color difference and higher rehydration ratio could be achieved as drying temperature decreases and ultrasound power increases. The increase in contact ultrasound power could reduce energy consumption of drying process up to 34.60%. Therefore, contact ultrasound assistance is a promising method to enhance hot air drying process.  相似文献   

11.
Shengli lignite coal, originated from inner Mongolia China, contains significantly high amount of moisture (more than 30%) which can cause spontaneous combustion or other application problems. Thus, it is of interest to understand the heat and mass transfer mechanism of the low-rank lignite drying under different drying environments such as N2, CO2, air, argon, and helium. In this study, fundamental drying experiments with different drying agents were performed on coal samples using thermogravimetric analysis (TGA) method. Lignites with size of 0.045–0.075?mm were heated up from ambient temperature to a target temperature of 175°C under different environments at heating rates of 5, 10, 20, 40, and 80 °C/min, respectively. It was found that thermal conductivity of drying media, heating rate, and initial moisture content are three most significant factors affecting lignite drying process. The highest moisture release rate and the lowest Tpeak (when maximum moisture release rate occurred) were observed when drying with helium due to its highest evaporation constant (i.e., highest thermal conductivity). Moreover, higher heating rate and moisture content resulted in higher evaporation rate and Tpeak. In the meantime, the classical D2 law, which is used to simulate the liquid fuel droplet combustion, was further developed to describe the “group effect” of moisture evaporation process of solid fuel during drying. The D2 law well explains the experiment results. Finally, the structures of the dried lignite samples under different drying mediums were investigated through scanning electron microscopy studies. It was found that lignite coals shrank and became more compact when dried out, especially with drying agent CO2.  相似文献   

12.
《Drying Technology》2013,31(10):2231-2253
Abstract

A two-dimensional mathematical model developed for vacuum-contact drying of wood was adapted to simulate superheated steam vacuum drying. The moisture and heat equations are based on the water potential concept whereas the pressure equation is formulated considering unsteady-state mass conservation of dry air. A drying test conducted on sugar maple sapwood in a laboratory vacuum kiln was used to infer the convective mass and heat transfer coefficients through a curve fitting technique. The average air velocity was 2.5 m s?1 and the dry-bulb temperature varied between 60 and 66°C. The ambient pressure varied from 15 to 11 kPa. Simulation results indicate that heat and mass transfer coefficients are moisture content dependent. The simulated drying curve based on transfer coefficients calculated from boundary layer theory poorly fits experimental results. The functional relation for the relative permeability of wood to air is a key parameter in predicting the pressure evolution in wood in the course of drying. In the case of small vacuum kilns, radiant heat can contribute substantially to the total heat transfer to the evaporative surface at the early stages of drying. As for conventional drying, the air velocity could be reduced at the latter stage of drying with little or no change to the drying rate.  相似文献   

13.
This article evaluates the effect of air drying, freeze drying, and 24-month storage at 4 and 20 ° C on unblanched and blanched Boletus edulis . Water content and activity were lower in freeze-dried mushrooms than in air-dried mushrooms, whereas rehydration capacity showed the opposite tendency. Drying resulted in substantial losses of the following antioxidants: total flavonoids (4–7%), vitamin C (2–36%), β-carotene (26–32%), and total tocopherols (72–81%); total polyphenols increased during air drying (7–17%) and decreased during freeze drying (5–7%). Antioxidant activity increased 1–33% during drying. Storage led to further changes in the quality of dried mushrooms. After 24 months, no vitamin C or tocopherols were detected, and water content and activity were moderately high.  相似文献   

14.
Abstract

The second stage convective drying behavior of osmo-dehydrated blueberries was evaluated in a forced-air cabinet dryer (temperature: 50°C, relative humidity: 14%, air velocity: 0.6 m/s) with a cross-flow tray arrangement. Fick's second law of unsteady state diffusion was used to model the air drying kinetics. The results showed that the convective-air drying of the blueberries occurred in two falling rate periods. The effective diffusion coefficients, Deff, during the first falling rate period ranged from 1.19 × 10?10 m2/s to 2.14 × 10?10 m2s and ranged from 4.04 × 10?11 m2/s to 1.32 × 10?10 m2/s during the second falling rate period. Among the pre-treatment conditions, the temperature and sucrose concentration during osmotic dehydration significantly (p < 0.05) influenced the air drying time, while the effect of contact time was not significant (p > 0.05).  相似文献   

15.
ABSTRACT

The drying of paper under impinging jets of superheated steam and air during the falling rate period was investigated in the range of jet temperatures 150 < Tj < 450oC and basis weights 30 < B < 150 g/m2. The equilibrium moisture content of Kraft and TMP paper was measured. The adsorption energy of water on pulp fibers near the boiling point appears lower than the value extrapolated from Prahl s (1968) measurements made in air at lower temperatures. The critical moisture content was determined for superheated steam and air impingement drying. Complete drying rate - moisture content histories are presented for a series of typical conditions.  相似文献   

16.
Drying behavior of green apples in a laboratory dryer was examined. Prior to drying, the apples were cut in 8 mm thick slices, which were then treated with citric acid solution and blanched hot water at 80°C. Next, they were dried at 65°C with an air velocity of 2.0 m/s. The shortest drying time (270 min) was obtained with apples pretreated with citric acid solution. The drying data were fitted with 11 mathematical models available in the literature. Selection of the best model was investigated by comparing the determination of coefficient (R 2), reduced chi-square (χ2), root means square error ( RMSE ), and mean relative percentage error (P) between the experimental and predicted values. The results showed that the Wang and Singh, logarithmic, and Verma et al. models gave the best results in describing thin-layer drying of apple slices. The effective moisture diffusivity of pretreated samples with citric acid solution was higher than the other samples.  相似文献   

17.
Experimental data on the drying behavior of suspension droplets is limited, despite its importance in industrial applications for material processing, chemical or the food industry involving spray dryers. This fact is particularly significant for high load and temperature conditions, as found in such industrial applications. In this work, the drying behavior of acoustically levitated multiphase droplets has been experimentally investigated. The acoustic tube levitator has been modified in order to allow experiments to be performed at high temperature conditions. The flow rate, temperature and relative humidity of this air stream can be controlled by an air conditioning system. A CMOS camera and a back-light illumination system are used to measure the droplet cross-sectional area and vertical position of the droplet during the drying process. The experiments have been performed using water–glass particle suspensions. The glass particles have a mean particle size and relative density of 13 μm and 2.5, respectively. The effect of the air temperature (60 °C<T<120 °C), initial volume of the droplet (0.05 μl<V0<0.7 μl), initial solid mass load (0.01<YS<0.5) and relative humidity of the air (0.05<HR<0.45) on the mean porosity of the grain, first drying period duration and liquid evaporation rate has been analyzed by means of a parametric screening matrix and also by means of a central composite design (CCD) experimental design. The most important parameters to be considered for the porosity and the drying behavior in the range of variables analyzed are the initial solid mass load and the initial droplet volume. The relative humidity of the air exerts a moderate influence on the drying behavior of the droplet and the temperature has only a very low impact on the mean porosity. In addition, particular attention should be given to the drying behavior of small droplets, which result in a very low mean porosity values for high solid mass loads. The CCD confirms that the initial droplet volume, the solid mass load and their interaction exert significant influence on the three responses.  相似文献   

18.
Tectona grandis and Gmelina arborea are common in commercial reforestation in the tropics. However, color variations, moisture content, and drying defects are also present in dried lumber. Moisture content variations, drying defects, and color changes were evaluated in the present work for three drying methods (kiln, solar, and air drying) during three seasons (dry, rainy, and transition season) in Costa Rica. According to the results, kiln drying had the fastest drying times, regardless of the season. On the other hand, air drying had slower drying time and higher final moisture content. With regard to defects, kiln drying produced the highest number and magnitude of defects in both species, whereas air drying showed the lowest quantity and severity of defects. No variations due to the drying methods or the season were observed in check and split, though solar drying presented intermediate values in all drying defects. The seasons of the year did not present any effect on drying defects. Finally, T. grandis dried lumber is darker than green lumber, and dried G. arborea wood is clearer. In addition, there is an increase in red ( a * ) and yellow ( L * ) tonalities, and color changes (Δ E * ) are considered perceptible or very perceptible in both species. No differences were found among the three drying methods in Δ E * , although the season of the year affected dif L * and dif C * significantly.  相似文献   

19.
ABSTRACT

Drying of dielectric resin coatings is accompanied simultaneously by evaporation of multicomponent solvents and polycondensation from monomers. The characteristic of the drying is studied experimentally. As a test sample, a vanish consisting of trimellitic acid anhydride and 4.41-diphenylmethane diisocyanate dissolved in the mixture of N-methylpyrrolidone and xylene is coated on an aluminum pan. The sample is subjected in drying in two types of dryers: hot air heating and radiation heating. The constant drying rate period is not observed in any run. The maximum drying rate of the sample is lower than the evaporation rate from the solvent layer with no resin. There are remarkable fluctuations in the drying rate in the decreasing drying rate period. The fluctuations are caused by bubble formation. The progress of the reaction can be followed by IR spectroscopic analysis. From these results it is suggested that removal of the solvent and the product is inhibited by the formation of a polymer skin on the surface and it makes control of drying difficult.  相似文献   

20.
ABSTRACT

Experiments were carried out in a solar simulator to study the influence of air temperature (25-40°C), air relative humidity (40-80%), air velocity (0.95-2.2 m/s), radiation intensity (0-916 W/m2), and loading density (10-30 kg/m2) on the drying rate of a bed of cassava chips (2×2×2 cm). Well-known thin-layer drying equations were fitted to the experimental data, and the empirical constants were used in a statistical analysis of the influence of process conditions on the drying rate. The air temperature, air velocity, radiation intensity, and loading density influenced the drying rate significantly (p=0.05). The effects of the air temperature and the radiation intensity were attributed to the temperature-dependent diffusion of moisture within the chips, while the effect of the air velocity was ascribed to the resistance to mass transfer at the air-chip interface. Equations were presented to express the empirical constants as functions of the process variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号