首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The characteristics of fugitive dust emitted from vehicles traveling on unpaved dirt roads were measured using a suite of instruments including a real-time fugitive dust sampler. The fugitive dust sampler is formed from a combination of a large particle inlet and an optical particle spectrometer that reports particle sizes from 6 to 75 µm. The large particle inlet permits the sampling of particles up to 75 µm with only a moderate dependence of sampling efficiency on wind-speed. Measurements made with the sampler showed that particles as large as ~50 µm were suspended from vehicular movement on the dirt roads, with the mode of the fugitive dust particle number size distribution ~2 µm, while the mass distribution mode was ~7 µm. A comparison of the fugitive dust sampler measurements with those made using standard PM instruments showed that the conventional instruments have a wind-direction bias that can result in under-sampling of large particles. The current measurements suggest that particles suspended from dirt roadways are of importance for local air quality within the near-road environment.

Copyright © 2017 American Association for Aerosol Research  相似文献   


3.
In this article, a proof of concept of a new measurement instrument, differential diffusion analyzer (DDA), is established. The DDA enables the measurement of the size distribution of sub-10 nm aerosol particles, and it can also be used as a size classifier to separate a certain particle size from a size distribution for subsequent analysis. The developed technique is based on the diffusion separation of different size particles. Thus, the main advantage of the DDA compared to other methods is that particle charging is not required. Simulated and experimentally measured transmission efficiencies show that the diffusion-based differential size classification is a feasible concept, and moreover, shows that particle size is inversely proportional to the square root of the total flow rate.

Copyright © 2017 American Association for Aerosol Research  相似文献   


4.
A butanol-type ultrafine condensation particle counter (UCPC, Model 3776, TSI, Inc., Shoreview, MN, USA), which can achieve a 50% detection efficiency diameter (d50) of 2.5 nm using a capillary-sheath structure, was modified and tested in the laboratory for airborne measurements. The aerosol flow rate through the capillary is a key factor affecting the quantification of aerosol particle number concentrations. A pressure-dependent correction factor for the aerosol flow rate was determined using a newly added mass flow meter for the sheath flow and the external calibration system. The effect of particle coincidence in the optical sensing volume was evaluated using an aerosol electrometer (AE, Model 3068B, TSI, Inc.) as a reference. An additional correction factor for the coincidence effect was derived to improve the quantification accuracy at higher concentrations. The particle detection efficiency relative to the AE was measured for mobility diameters of 3.1–50 nm and inlet absolute pressures of 101–40 kPa. The pressure dependence of the d50 value, asymptotic detection efficiency, and shape of the particle detection efficiency curve is discussed, along with simple theoretical calculations for the diffusion loss of particles and the butanol saturation ratio in the condenser.

© 2017 American Association for Aerosol Science  相似文献   


5.
Detection and quantification of dilute viral aerosols, as encountered outside animal housing facilities, requires methods that are able to detect small numbers of viruses in large volumes of air. This study compared the performance of two size-differentiating cascade impactors; an Andersen 8-stage (ACI; 28.3 L/min) and a high volume Tisch (TCI; 1,133 L/min) to assess sampling efficiency for detecting porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV). Samples of particles sorted by aerodynamic diameter were analyzed by quantitative polymerase chain reaction (qPCR) and collection efficiency was assessed by particle size. Collection media (minimum essential medium [MEM] and beef extract [BE]), elution technique (active versus passive), and sampling times (10, 20, and 30 min) were variables assessed for the TCI sampler. Extraction efficiency was 35% higher with BE as compared to that of MEM (p = 0.0007); active extraction technique was 19% more efficient than the passive technique (p = 0.03); time of sampling did not significantly affect the amount of virus recovered. The ACI sampler was more efficient in detecting both viruses from small and medium sized airborne particles (≤3 μm) as compared to the TCI sampler (p < 0.001). The latter sampler, however, was more efficient at IAV detection from large airborne particles (>3 μm) (p = 0.0025) indicating the potential of this sampler in detecting the presence of small amounts of viruses in aerosols under field conditions.

© 2017 American Association for Aerosol Research  相似文献   


6.
The problem of large pressure-differential-driven laminar convective–diffusive ultrafine aerosol flow through bent microtubes is of interest in several contemporary research areas including; release of contents from pressurized containment vessels, aerosol sampling equipment, advanced scientific instruments, gas-phase microheat exchangers, and microfluidic devices. In each of these areas, the predominant problem is the determination of the fraction of particles entering the microtube that is deposited within the tube and the fraction that is transmitted through. Due to the extensive parameter restrictions of this class of problems, a Lagrangian particle tracking method making use of the coupling of the analytical stream line solutions of Dean for convective motion and a sampling of a Gaussian distribution for diffusive motion is a useful tool in problem characterization. This method is a direct analog to the Monte Carlo N-Particle method of particle transport extensively used in nuclear physics and engineering. In this work, 10-nm-diameter particles with a density of 1 g/cm3 are tracked within microtubes with toroidal bends with pressure differentials ranging between 0.2175 and 0.87 atmospheres. The tubes have radii of 25 microns or 50 microns and the radius of curvature is either 1 m or 0.3183 cm. The carrier gas is helium, and temperatures of 298 K and 558 K are considered. Numerical convergence is considered as a function of time step size and of the number of particles per simulation. Particle transmission rates and deposition patterns within the bent microtubes are calculated.

Copyright © 2016 American Association for Aerosol Research  相似文献   


7.
Near traffic routes and urban areas, the outdoor air particle number concentration is typically dominated by ultrafine particles. These particles can enter into the nearby buildings affecting the human exposure on ultrafine particles indoors. In this study, we demonstrate an aerosol generation system which mimics the characteristic traffic related aerosol. The aerosol generation system was used to determine the size-resolved particle filtration efficiencies of five typical commercial filters in the particle diameter range of 1.3–240 nm. Two different HEPA filters were observed to be efficient in all particle sizes. A fibrous filter (F7) was efficient at small particle sizes representing the nucleation mode of traffic related aerosol, but its efficiency decreased down to 60% with the increasing particle size. In contrast, the filtration efficiency of an electrostatic precipitator (ESP) increased as a function of the particle size, being more efficient for the soot mode of traffic related aerosol than for the nucleation mode. An electret filter with a charger was relatively efficient (filtration efficiency >85%) at all the observed particle sizes. The HEPA, F7 and electret filters were found to practically remove the particles/nanoclusters smaller than 3 nm. All in all, the filtration efficiencies were observed to be strongly dependent on the particle size and significant differences were found between different filters. Based on these results, we suggest that the particulate filter test standards should be extended to cover the ultrafine particles, which dominate the particle concentrations in outdoor air and are hazardous for public health.

Copyright © 2017 American Association for Aerosol Research  相似文献   


8.
Understanding transport characteristics of airborne nanotubes and nanofibers is important for assessing their fate in the respiratory system. Typically, diffusion and aerodynamic diameters capture key deposition mechanisms of near-spherical particles such as diffusion and impaction in the submicrometer size range. For nonspherical particles with high aspect ratios, such as aerosolized carbon nanotubes, these diameters can vary widely, requiring their independent measurement. The objective of this study was to develop an approach to provide approximate estimates of aerodynamic- and diffusion-equivalent diameters of airborne carbon nanotubes (CNTs) and carbon nanofibers (CNFs) using their morphological characteristics obtained from electron micrographs. The as-received CNT and CNF materials were aerosolized using different techniques such as dry dispersion and nebulization. Mobility and aerodynamic diameters of test aerosol were directly deduced from tandem measurement of particle mobility and mass. The same test aerosol was mobility-classified and subsequently collected on a microscopy grid for transmission electron microscopy (TEM) analysis. TEM micrographs were used to obtain projected area, maximum projected length, and two-dimensional (2-D) radius of gyration of test particles. Estimates of the aerodynamic diameter and the diffusion diameter were obtained by applying the fractal theory developed for aerosol agglomerates of primary spherical particles. After accounting for the particle dynamic shape factor, estimated aerodynamic diameters agreed with those from the direct measurements (using tandem mobility-mass technique) within 30–40% for the agglomerates with relatively open structures while the diffusion diameters agreed within 40–50%. The uncertainty of these estimates mainly depends on degree of overlapping structures in the microscopy image and nonuniformity in tube diameter. The approach could be useful in calculating approximate airborne properties from microscopy images of CNT and CNF agglomerates with relatively open structures.

This article not subject to US copyright law  相似文献   


9.
Accurate exposure assessments are needed to evaluate health hazards caused by airborne microorganisms and require air samplers that efficiently capture representative samples. This highlights the need for samplers with well-defined performance characteristics. While generic aerosol performance measurements are fundamental to evaluate/compare samplers, the added complexity caused by the diversity of microorganisms, especially in combination with cultivation-based analysis methods, may render such measurements inadequate to assess suitability for bioaerosols. Specific performance measurements that take into account the end-to-end sampling process, targeted bioaerosol and analysis method could help guide selection of air samplers.

Nine different samplers (impactors/impingers/cyclones/ electrostatic precipitators/filtration samplers) were subjected to comparative performance testing in this work. Their end-to-end cultivation-based biological sampling efficiencies (BSEs) and PCR-/microscopy-based physical sampling efficiencies (PSEs) relative to a reference sampler (BioSampler) were determined for gram-negative and gram-positive vegetative bacteria, bacterial spores, and viruses.

Significant differences were revealed among the samplers and shown to depend on the bioaerosol's stress–sensitivity and particle size. Samplers employing dry collection had lower BSEs for stress-sensitive bioaerosols than wet collection methods, while nonfilter-based samplers showed reduced PSEs for 1 μm compared to 4 μm bioaerosols. Several samplers were shown to underestimate bioaerosol concentration levels relative to the BioSampler due to having lower sampling efficiencies, although they generally obtained samples that were more concentrated due to having higher concentration factors.

Our work may help increase user awareness about important performance criteria for bioaerosol sampling, which could contribute to methodological harmonization/standardization and result in more reliable exposure assessments for airborne pathogens and other bioaerosols of interest.

Copyright 2014 American Association for Aerosol Research  相似文献   


10.
A water-based condensational growth channel was developed for imaging mobility-separated particles within a parallel plate separation channel of the Fast Integrated Mobility Spectrometer (FIMS). Reported are initial tests of that system, in which the alcohol condenser of the FIMS was replaced by a water-based condensational growth channel. Tests with monodispersed sodium chloride aerosol verify that the water-condensational growth maintained the laminar flow, while providing sufficient growth for particle imaging. Particle positions mapped onto particle mobility, in accordance with theoretical expectations. Particles ranging in size from 12 nm to 100 nm were counted with the same efficiency as with a butanol-based ultrafine particle counter, once inlet and line losses were taken into account.

Copyright © 2017 American Association for Aerosol Research  相似文献   


11.
12.
The number concentration and size-resolved properties of acidic ultrafine particles have been observed to more closely associate with adverse health effects than do indices of total particulate mass. However, no reliable measurement techniques are currently available to quantify the number concentration and the size distribution of ambient acidic ultrafine particles. In this study, a method with the use of iron nanofilm detectors for enumeration and size measurement of acid aerosols is developed and refined. Standard sulfuric acid (H2SO4) or ammonium hydrogen sulfate (NH4HSO4) droplets and sulfuric acid-coated particles were generated and deposited on the detectors causing reaction spots. The dimensions of the reaction spots were examined with Atomic Force Microscopy (AFM) to establish the correlations between the diameter of the particle and the size of the reaction spot. To validate this method, field measurements were conducted from September 06 to November 30, 2010, at Tai Mo Shan in Hong Kong. The results indicated that the particle number concentrations obtained from the AFM scanning of the exposed detectors via scanning mobility particle sizer (SMPS) and electrostatic precipitator (ESP) collection were comparable to those derived from the SMPS + CPC (condensation particle counter) measurements (p > 0.05). The average geometric mean diameter of particles at peak measured by the SMPS + CPC and the detectors scanned by the AFM was 52.3 ± 6.9 nm and 51.9 ± 3.1 nm, respectively, showing good agreement. It is suggested that the iron nanofilm detectors could be a reliable tool for the measurement and analysis of acidic particles in the atmosphere.

Copyright 2012 American Association for Aerosol Research  相似文献   

13.
We describe the performance of a drift tube-ion mobility spectrometry (DT-IMS) instrument for the measurement of aerosol particles. In DT-IMS, the electrical mobility of a measured particle is inferred directly from the time required for the particle to traverse a drift region, with motion driven by an electrostatic field. Electrical mobility distributions are hence linked to arrival time distributions (ATDs) for particles reaching a detector downstream of the drift region. The developed instrument addresses two obstacles that have limited DT-IMS use for aerosol measurement previously: (1) conventional drift tubes cannot efficiently sample charged particles at ground potential and (2) the sensitivities of commonly used Faraday plate detectors are too low for most aerosols. Obstacle (1) is circumvented by creating a “sample volume” of aerosol for measurement, defined by the streamlines of fluid flow. Obstacle (2) is bypassed by interfacing the end of the drift region with a condensation particle counter. The DT-IMS prototype shows high linearity for arrival time versus inverse electrical mobility (R 2 > 0.99) over the size range tested (2.2–11.1 nm), and measurements compare well with both analytical and numerical models of device performance. A dimensionless calibration curve linking drift time to inverse electrical mobility is developed. In less than 5 s, it is possible to measure 11.1 nm particles, while 2.2 nm particles are analyzable on a subsecond scale. The transmission efficiency is found to be dependent upon electrostatic deposition for short drift times and upon advective losses for long drift times.

Copyright 2014 American Association for Aerosol Research  相似文献   


14.
Results of a numerical study of the RespiCon sampler performance in the calm air are presented. The air flow is described by the Navier–Stokes equations of axisymmetric stationary viscous flow of incompressible fluid that are numerically integrated by the computational fluid dynamics (CFD) software FLUENT. The collection efficiencies of RespiCon impactor stages agree quite well with experimental data and curves of the European standards for the thoracic and respirable dust fractions. The aspiration efficiencies derived from the numerical model overestimate the experimental data in the range of particle sizes of 10 μm < dp < 40 μm; however, they correctly predict the value of maximal size of aspirated particles. A new design of the RespiCon sampler with a higher volume flow rate was developed.

Copyright 2014 American Association for Aerosol Research  相似文献   


15.
The objective of the present study was to characterize the performance of a federal reference method (FRM) PM10 size-selective inlet using analysis methods designed to minimize uncertainty in measured sampling efficiencies for large particles such as those most often emitted from agricultural operations. The performance of an FRM PM10 inlet was characterized in a wind tunnel at a wind speed of 8 km/h. Data were also collected for 20 and 25 μm particles at wind speeds of 2 and 24 km/h. Results of the present sampler evaluation compared well with those of previous studies for a similar inlet near the cutpoint, and the sampler passed the criteria required for certification as a FRM sampler when tested at 8 km/h. Sampling effectiveness values for particles with nominal diameters of 20 and 25 μm exceeded 3% for 8 and 24 km/h wind speeds in the present study and were statistically higher than both the “ideal” PM10 sampler (as defined in 40 CFR 53) and the ISO (1995) standard definition of thoracic particles (p < 0.05) for 25 μm particles leading to the potential for significant sampling bias relative to the “ideal” PM10 sampler when measuring large aerosols.

Copyright 2014 American Association for Aerosol Research  相似文献   


16.
Air pollution has been recognised as one of the major risk factors for the global burden of disease. In modern society the majority of the exposure occurs indoors where people spend most of their time. Indoor air quality may be improved with portable air cleaners utilizing various cleaning techniques, such as filtration, electrostatic precipitation, and ionization. The objective of this study was to quantify air cleaner particle removal by particle size resolved clean air delivery rates (CADR). This was obtained by utilizing particle concentration measurements and indoor aerosol modeling. Our test protocol was applied to five air cleaners designed for household and office use. For particles with diameters above 100 nm and at the chosen settings, the CADR was around 40 m3/h for an ion generator, around 70 m3/h for an electrostatic precipitator, and ranging from 100 to almost 300 m3/h for the three filter-based air cleaners. Similar performances were obtained for ultrafine particles, except for the ion generator that performed better in this size range.

Copyright 2014 American Association for Aerosol Research  相似文献   


17.
Accurate measurement of particle size distribution using electrical-mobility techniques requires knowledge of the charging state of the sampled particles. A consistent particle charge distribution is possible with bipolar diffusion chargers operated under steady-state condition. Theoretical steady-state charge distributions for bipolar charging are well established but recent studies have shown that the performance of particle chargers is a strong function of particle size, particle concentration, ion source, and charger operating conditions. Most of these studies have focused on particles smaller than 100 nm and the applicability of these results for particles larger than 100 nm must be investigated. In this study, experimentally obtained singly-charged and doubly-charged fractions are compared against theoretical predictions for particles in the size range of 100 to 900 nm. The experimental results show that the commercial soft X-ray charger performs as theoretically-predicted over the range of conditions studied while the performance of other commonly used radioactive chargers (85Kr and 210Po) are dependent on source strengths, flowrates, particle charge polarities, and particle sizes. From measurements of particle residence times and ion concentrations in different test bipolar chargers, prior observations of flowrate-dependent charging fractions can be explained. Additionally, the results from this study are used to determine an acceptable time period for usage of the commercial TSI 3077A 85Kr chargers for steady-state charging as a function of flowrate.

Copyright © 2018 American Association for Aerosol Research  相似文献   


18.
19.
Aerosol sampling and identification is vital for assessment and control of particulate matter pollution, airborne pathogens, allergens and toxins, and their effect on air quality, human health, and climate change. Assays capable of accurate identification and quantification of chemical and biological airborne components of aerosol provide very limited sampling time resolution and relatively dilute samples. A low-cost micro-channel collector (μCC) which offers fine temporal and spatial resolution, high collection efficiency, and delivers highly concentrated samples in very small liquid volumes was developed and tested. The design and optimization of this μCC was guided by computational fluid dynamics (CFD) modeling. Collection efficiency tests of the sampler were performed in a well-mixed aerosol chamber using aerosolized fluorescent microspheres in the 0.5–6 μm diameter range. Samples were collected in the μCC and eluted into 100 μL liquid aliquots; bulk fluorescence measurements were used to determine the performance of the collector. Typical collection efficiencies were above 50% for 0.5 μm particles and 90% for particles larger than 1 μm. The experimental results agreed with the CFD modeling for particles larger than 2 μm, but smaller particles were captured more efficiently than predicted by the CFD modeling. Nondimensional analysis of capture efficiencies showed good agreement for a specific geometry but suggested that the effect of channel curvature needs to be further investigated.

Copyright 2014 American Association for Aerosol Research  相似文献   


20.
During occupational exposure studies, the use of conventional scanning mobility particle sizers (SMPS) provides high quality data but may convey transport and application limitations. New instruments aiming to overcome these limitations are being currently developed. The purpose of the present study was to compare the performance of the novel portable NanoScan SMPS TSI 3910 with that of two stationary SMPS instruments and one ultrafine condensation particle counter (UCPC) in a controlled atmosphere and for different particle types and concentrations.

The results show that NanoScan tends to overestimate particle number concentrations with regard to the UCPC, particularly for agglomerated particles (ZnO, spark generated soot and diesel soot particles) with relative differences >20%. The best agreements between the internal reference values and measured number concentrations were obtained when measuring compact and spherical particles (NaCl and DEHS particles). With regard to particle diameter (modal size), results from NanoScan were comparable < [± 20%] to those measured by SMPSs for most of the aerosols measured.

The findings of this study show that mobility particle sizers using unipolar and bipolar charging may be affected differently by particle size, morphologies, particle composition and concentration. While the sizing accuracy of the NanoScan SMPS was mostly within ±25%, it may miscount total particle number concentration by more than 50% (especially for agglomerated particles), thus making it unsuitable for occupational exposure assessments where high degree of accuracy is required (e.g., in tier 3). However, can be a useful instrument to obtain an estimate of the aerosol size distribution in indoor and workplace air, e.g., in tier 2.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号