首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The quasi-static fracture behaviour (JR curves) of modified 9Cr–1Mo (P91) steel was studied. The JR curves were established at 298, 653, 823 and 893 K, and fracture toughness J0·2 at 0·2 mm of crack extension was determined. The value of ~J0·2 at 653 K was lower compared to that at 298 K followed by increases in J0·2 values at 823 and 893 K. The decrease in J0·2 at 653 K can be attributed to the influence of dynamic strain aging. At 893 K, a significantly higher (more than 200%) J0·2 was observed, since plastic deformation of the net section, rather than crack growth, occurred in this condition.  相似文献   

2.
In this study, various existing instability criteria were employed to delineate the unstable flow regions in modified 9Cr–1Mo steel during hot deformation. Experimental stress–strain data obtained from isothermal hot compression tests, in a wide range of temperatures (1123–1373 K) and strain rates (10−3–10 s−1), were employed to develop instability maps. The domains of these instability maps were validated through detailed microstructural study. It has been observed that Hart’s stability criterion, Jonas’s criterion and Semiatin’s criterion under-predicts the instability regions in the studied temperatures and strain rates regime. Gegel’s and Alexander’s criteria as well as Murty’s metallurgical instability criterion, on the other hand, found to over-predict the instability domains. The instability map developed based on Dynamic Materials Model criterion has been found to precisely predict the instability domains. This instability map revealed four major unstable domains. Microscopic examination in these domains revealed that the instability is manifested in the specimens either as localized deformation band primarily along one of the diagonal or inhomogeneous distribution of martensite lath in the prior austenite grains.  相似文献   

3.
Abstract

The microstructure and mechanical properties of a medium carbon Cr–Ni–Mo–Nb steel in quenched and tempered conditions were investigated using transmission electron microscopy (TEM), X-ray analysis, and tensile and impact tests. Results showed that increasing austenitisation temperature gave rise to an increase in the tensile strength due to more complete dissolution of primary carbides during austenitisation at high temperatures. The austenite grains were fine when the austenitisation temperature was <1373 K owing to the pinning effect of undissolved Nb(C,N) particles. A tensile strength of 1600 MPa was kept at tempering temperatures up to 848 K, while the peak impact toughness was attained at 913 K tempering, as a result of the replacement of coarse Fe rich M3C carbides by fine Mo rich M2C carbides. Austenitisation at 1323 K followed by 913 K tempering could result in a combination of high strength and good toughness for the Cr–Ni–Mo–Nb steel.  相似文献   

4.
Near-threshold fatigue crack growth behavior in 25Cr2NiMo1V steel with different microstructures was investigated by utilizing the load-shedding technique at ambient temperature. Crack surface morphology was observed by SEM with special emphases on the incidence of intergranular fracture and the influence on crack growth rates. Results show that the maximum intergranularity occurs at the ΔK corresponding to the cyclic plastic zone size being equivalent to the prior austenitic grain size. Two types of crack growth mode were observed in the near-threshold regime, i.e., the crystallographic mode of crack growth and the striation mode of crack advance. The incidence of faceted fracture was mainly rationalized by comparing the cyclic plastic zone size with the grain size. It is concluded that, in the crystallographic mode, lower crack growth rates in samples with higher heat treatment temperatures are caused by a greater degree of roughness-induced crack closure (RICC), faceted fracture induced crack closure (FFICC), and oxide-induced crack closure (OICC). The faceted fracture shows negligible influence on crack growth rates when cracks grow in a striation controlled mode.  相似文献   

5.
The effect of tungsten–molybdenum (W–Mo) balance on creep life has been investigated for five heats of martensitic 9Cr steel with 1.5 % Mo equivalent (= 1/2W + Mo) at 600, 650 and 700°C. The combination of W and Mo concentrations in the present steel is 3W–0Mo, 2.8W–0.1Mo, 2.4W–0.3Mo, 1.8W–0.6Mo and 0W–1.5Mo. The time to rupture tr exhibits a monotonous increase with increasing the W–Mo balance parameter 1/2W/(1/2W + Mo), namely, with increasing W concentration and concomitantly with decreasing Mo. The increase in tr with increasing 1/2W/(1/2W + Mo) becomes less significant at long times. The precipitation of Fe2(W,Mo) Laves phase takes place preferentially at prior austenite grain boundaries during creep, which enhances the grain boundary (GB) precipitation hardening. The amount of Laves phase increases with increasing 1/2W/(1/2W + Mo). The coarsening of Laves phase takes place at long times during creep, which reduces the GB precipitation hardening.  相似文献   

6.
Distinct regions such as weld metal, heat-affected zone (HAZ) and base metal of P9 steel weld joints fabricated by various welding processes were investigated using impression creep testing. Smaller prior austenitic grain size, lower density of precipitates and dislocations resulted in faster recovery and higher creep rate of HAZ in comparison to the weld and base metal. Compared to base metal, shielded metal arc weld (SMAW) and activated tungsten inert gas (A-TIG) weld of the P9 steel weld joints exhibited better resistance to creep and displayed higher activation energy due to their coarser prior austenite grain size. A-TIG HAZ exhibited superior creep properties compared to the SMAW and TIG HAZ due to the presence of higher number density of precipitates.  相似文献   

7.
Abstract

The influence of different soaking temperatures in the range 973–1623 K (below Ac 1 to above Ac 4) before oil quenching and tempering, on the microstructure, hardness, grain size, and tensile properties of modified 9Cr–1Mo steel has been studied. This was done in an effort to assess the tensile behaviour of the different microstructures likely to be encountered in the heat affected zone of a fusion welded joint of the steel. The steel developed predominantly martensitic structure after quenching. Soaking of steel in the intercritical temperature range (between Ac 1 and Ac 3) reduced the prior austenitic grain size and hardness. Soaking temperatures above Ac 3 increased the grain size and hardness of the steel until the formation of δ ferrite at temperatures above Ac 4. The δ ferrite formation at soaking temperatures above Ac 4 reduced the grain size and hardness of the steel. The tensile strength of the steel exhibited a minimum for soaking in the intercritical temperature range where the ductility was highest. Strength increased and ductility decreased with further increases in soaking temperatures above Ac 3. The formation of δ ferrite at soaking temperatures above Ac 4 improved the ductility. The tensile properties have been correlated with the microstructures.  相似文献   

8.
Abstract

Cyclic creep behaviour of modified 9Cr–1Mo steel was investigated by a series of cyclic creep (CC) tests at 600°C, which were performed under controlled tension–tension loading cycles with the magnitude of stress ranges in a constant stress ratio (R?=?0·1). Hold time was applied for a 10 min hold at the maximum stress (σmax) and minimum stress (σmin). The CC properties were compared with the static creep (SC) using Norton’s power law, Larson–Miller plot, and Monkman–Grant relation, and the microstructure was examined. For the test conditions employed in the present investigation, retardation in the CC behaviour in terms of a lower creep rate and longer rupture time compared to those in the SC was obtained. The retardation was ascribed to the effects associated with anelastic recovery during the 10 min hold time at the minimum load of the cyclic loading. The creep rupture ductility decreased with a general decrease in stress, and there was no difference in the creep ductility between the CC and SC. The steel displayed a transgranular fracture characterised by the presence of dimples resulting from micro-void coalescence. Carbide precipitation was more coarsened with increasing in exposure time in the CC tests.  相似文献   

9.
Abstract

A split Hopkinson bar is used to investigate the effects of prestrain and strain rate on the dynamic mechanical behaviour of 304L stainless steel, and these results are correlated with microstructure and fracture characteristics. Annealed 304L stainless steel is prestrained to strains of 0·15, 0·3, and 0·5, then machined as cylindrical compression specimens. Dynamic mechanical tests are performed at strain rates ranging from 102 to 5 × 103 s-1 at room temperature, with true stains varying from 0·1 to 0·3. It was found that 304L stainless steel is sensitive to applied prestrain and strain rate, with flow stress increasing with increasing prestrain and strain rate. Work hardening rate, strain rate sensitivity, and activation volume depend strongly on the variation of prestrain, strain, and strain rate. At larger prestrain and higher strain rate, work hardening rate decreases rapidly owing to greater heat deformation enhancement of plastic flow instability at dynamic loading. Strain rate sensitivity increases with increasing prestrain and work hardening stress (σ-σy). However, activation volume exhibits the reverse tendency. Catastrophic fracture is found only for 0·5 prestrain, 0·3 strain, and strain rate of 4·8 × 103 s-1. Large prestrain increases the resistance to plastic flow but decreases fracture elongation. Optical microscopy and SEM fracture feature observations reveal adiabatic shear band formation is the dominant fracture mechanism. Adiabatic shear band void and crack formation is along the direction of maximum shear stress and induces specimen fracture.  相似文献   

10.
11.
Abstract

A study is reported of temper embrittlement and hydrogen embrittlement in a series of model 9Cr–1Mo steel alloys in which the levels of silicon and phosphorus have been varied to separate the formation of the brittle intermetallic (Laves) phase from the segregation of phosphorus during aging. Phosphorus segregation was mildly detrimental to ductility properties, Laves phase formation was more detrimental, and their effects combined produced the most severe loss in ductility. Hydrogen effects were additive to those of aging. In unaged material without silicon enrichment, only M23C6 precipitates were detected, with little phosphorus segregation. With silicon enrichment, phosphorus segregation to lath and grain boundaries was enhanced. This enhancement increased the susceptibility of the materials to hydrogen embrittlement, promoting transgranular cleavage and chisel fracture. In aged material, the high phosphorus alloys showed some grain boundary segregation, but only limited interaction with hydrogen. In the high silicon alloys, the formation of Laves phase was most evident. This enhanced hydrogen embrittlement resulted in extensive chisel, transgranular cleavage, and some intergranular fracture. In the high silicon high phosphorus alloy, both Laves phase formation and phosphorus segregation were evident. This resulted in enhanced susceptibility to hydrogen embrittlement, producing intergranular fracture. Thus, silicon controls the susceptibility to hydrogen embrittlement in unaged alloy by promoting phosphorus segregation and in aged alloy by promoting Laves phase formation. In the aged alloy, segregation of phosphorus can enhance the effect of silicon.

MST/1785  相似文献   

12.
Abstract

The measurement of ultrasonic velocity of 9Cr-1Mo ferritic steel thermally aged at 793 and 873 K exhibited four distinct regimes in the variation of ultrasonic velocity with aging time. These different regimes have been correlated with the progressive evolution and coarsening of precipitate microstructure studied using TEM and microhardness measurements. The study revealed that ultrasonic velocity can be used to examine the secondary precipitation in the steel and the use of this technique as such can be extended to the health assessment of a component during service.  相似文献   

13.
14.
The effect of austenite deformation and cooling rates on continuous cooling transformation microstructures for a Mn–Cr gear steel were investigated using a Gleeble 1500 thermomechanical test system. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, leading to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The deformation enhances the stability of austenite against bainite transformation, which results in an increase in amount of martensite/austenite (M/A) constituent with deformation at some cooling rates studied. Moreover, cooling rate also affects amount of M/A constituent. With decrease of cooling rate, amount of M/A constituent increases at first, but decreases subsequently till disappears eventually.  相似文献   

15.
Abstract

The synergism between hydrogen embrittlement and temper embrittlement has been investigated in a 9Cr–1Mo martensitic steel. Measurements of tensile ductility were used to monitor the development of embrittlement with increasing hydrogen content in material as tempered and aged for up to 5000 h at 500 or 550°C. A detailed examination was made of associated changes in fracture mechanism, precipitate microstructure, and interfacial and precipitate chemistry. A strong interaction between hydrogen and temper embrittlement was observed. Both types of embrittlement in isolation reduced tensile ductility by promoting a ductile interlath fracture mechanism: ‘chisel fracture’. Hydrogen and temper embrittlement acted synergistically to reduce ductility further by the promotion of brittle intergranular fracture and transgranular cleavage. The dominant factor controlling the interaction was the precipitation of a brittle intermetallic Laves phase containing phosphorus in solution. Phosphorus segregated to interfaces was considered to make an important, but secondary, contribution to the embrittlement observed.

MST/791  相似文献   

16.
Intrinsic workability of modified 9Cr–1Mo steel has been studied in a wide range of temperatures (1123–1373 K) and strain rates (0.001–10 s?1). Using the experimental data obtained from isothermal hot compression tests, processing map at 0.5 true strain has been developed employing dynamic material model (DMM) approach. The activation energy map has been developed to substantiate the results obtained from processing map and to finalize the optimum processing parameters. Microstructural studies have been carried out to validate the domains of the processing map. The material shows localized deformation bands in the temperature range of 1150–1373 K at strain rates above 1 s?1 and exhibits abnormally elongated martensite laths at higher temperature (1373 K) and lower strain rates (0.001–0.01 s?1). The optimum domain for the hot deformation is found to be in the temperature ranges of 1250–1350 K and strain rate ranges 0.015–0.3 s?1 with a peak efficiency of 38%. In this domain, apparent activation energy is found to be 400 kJ/mol. The microstructure of the specimens deformed in this region exhibits defect free equiaxed grains.  相似文献   

17.
Rapidly solidified amorphous Mg–23.5Ni (wt.%) ribbons were crystallized at 300 and 400 °C for 90 min. After annealing at 300 °C the microstructure was heterogeneous, consisting of rounded eutectic–lamellar domains, which contained magnesium grains smaller than 500 nm. In the case of ribbons annealed at 400 °C the microstructure, however, was homogenous, and composed of well-formed magnesium grains and Mg2Ni particles. At room temperature both crystallized materials were brittle due to the high volume fraction of Mg2Ni particles, but they exhibited some ductility with increasing test temperature. Above 200 °C, the microstructure of the ribbons annealed at 300 °C was characterised by the formation of particle free zones during the tensile test. This structure was not observed in the material annealed at 400 °C. Deformation behaviour and changes in the microstructure during plastic flow of both crystallized materials were explained according to grain boundary sliding mechanisms.  相似文献   

18.
This paper examines the effect of severe plastic deformation on creep behaviour of a Ti–6Al–4V alloy. The processed material with an ultrafine-grained (UFG) structure (d ≈ 150 nm) was prepared by multiaxial forging. Uniaxial constant stress compression and constant load tensile creep tests were performed at 648–698 K and at stresses ranging between 300 and 600 MPa on the UFG processed alloy and, for comparison purposes, on its coarse-grained (CG) state. The values of the stress exponents of the minimum creep rate n and creep activation energy Q c were determined. Creep behaviour was also investigated by nanoindentation method at room temperature under constant load. The microstructure was examined by transmission electron microscopy and scanning electron microscope equipped with an electron back scatter diffraction unit. The results of the uniaxial creep tests showed that the minimum creep rates of the UFG specimens are significantly higher in comparison with those of the CG state. However, the differences in the minimum creep rates of both states of alloy strongly decrease with increasing values of applied stress. The CG alloy exhibits better creep resistance than the UFG one over the stress range used; the minimum creep rate for the UFG alloy is about one to two orders of magnitude higher than that of the CG alloy. The indentation creep tests showed that annealing had little effect on the creep behaviour in UFG Ti alloy at room temperature.  相似文献   

19.
Abstract

The microstructure and mechanical properties of high Ni–Cr–Mo indefinite chilled cast iron with the addition of a newly developed multicomponent modifier consisting of mixed rare earths, Si–Ca alloy and Bi–Sb alloy have been investigated through optical microscopy, X-ray diffraction and scanning electron microscopy, along with hardness, impact toughness and wear resistance measurements. After the addition of the modifier, the grain sizes of the primary austenite and eutectic carbides are found to be greatly refined, and the typically highly continuous net-like carbides become less interconnected but rather appear more blocky shaped. Such microstructure changes lead to mechanical property improvement in the cast specimen, with its hardness increased from 43 to 50 HRC, impact toughness from 6·3 to 7·8 J cm?2 and ?20% increase in abrasive wear resistance.  相似文献   

20.
Abstract

Stainless steels containing enhanced chromium and carbon contents are particularly attractive for applications requiring improved wear and corrosion resistance. The as cast microstructure of such steels is composed mainly of ferritic matrix along with a network of interdendritic primary carbides. It has been shown that heat treatment of these steels results in microstructures that contain more than one type of carbide. A selective dissolution technique has been employed to isolate carbides from the matrix. Scanning electron microscope and X-ray diffraction studies of the as cast steels have shown that the primary carbides are essentially of M7C3 type, whereas in heat treated specimens both M7C3 (primary) and M23C6 (secondary) type carbides have been observed. The relative amounts of these carbides are found to be dependent on the heat treatment temperature. In addition, nucleation of austenite occurs above 950°C and at ~1250°C the matrix transforms entirely to austenite, which is retained completely on quenching to room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号