首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We studied the effect of liquid crystal polymer (LCP) and surface modification of neodymium‐iron‐boron (Nd‐Fe‐B) magnetic alloy on the magneto‐mechanical behavior of poly (phenylene sulfide) (PPS) bonded Nd‐Fe‐B magnets to accelerate efforts to develop useful thermoplastic magnets with optimal performance. The results indicate that blending the LCP with PPS provides the required balance of properties for the targeted applications. These properties include superior magneto‐mechanical performance at elevated temperatures, minimal melt viscosity at optimal LCP volume fraction, high stiffness, and improved dimensional stability, making the thermoplastic magnets suitable for use at elevated temperatures and in chemically corrosive environments where commercial rare earth alloy magnets are not useable. Enhanced wetting of the magnetic Nd‐Fe‐B powders by the polymers, formation of reinforcing LCP domains, and interactions between the polymers and the magnetic powders are thought to be responsible for the beneficial function of the LCP and Nd‐Fe‐B surface modifier in the PPS bonded Nd‐Fe‐B magnets.  相似文献   

2.
Ball milling and mixing with strong shear force and strike force were applied to get fine dispersion of nano‐SiOx particles in poly(phenylene sulfide) (PPS) powder. Nano‐SiOx/PPS composites were manufactured by intensive compounding with 3 wt% nano‐SiOx particles. Effects of the ball milling dispersion on crystal behavior and impact strength of nano‐SiOx/PPS nanocomposites were studied. Physical mechanisms of ball milling dispersion were investigated. Evaluations based on both WAXD and DSC indicates that crystallization behavior of nano‐SiOx/heat‐treated PPS (HT‐PPS) nanocomposites was influenced by the ball milling process. Their crystallinity was 25% less while Izod impact strength was 89% better than those of as‐received neat PPS. Increased kinetic energy via ball milling by external work makes nano‐SiOx able to overcome the attraction from itself to prevent agglomeration. Interfacial bonding of two phases between nano‐SiOx and PPS was enhanced by crosslinking in HT‐PPS and reduction in surface tension of interface during ball milling. The bonds allow SiOx to dissipate energy and thus improve PPS impact strength from the addition of nano‐SiOx. POLYM. ENG. SCI., 46:820–825, 2006. © 2006 Society of Plastics Engineers  相似文献   

3.
Steady‐ and oscillatory‐shear rheological behaviors of polypropylene/glass bead (PP/GB) and PP/wollastonite (PP/W) melts modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and the corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were examined by means of a parallel‐plate rheometer. With adding the elastomers (SEBS and SEBS‐g‐MA) and fillers (spherical GB and acicular W) to PP, viscosity especially at low shear rates and shear‐thinning flow behavior at high shear rates were pronounced as evidenced quantitatively by Carreau–Yasuda (CY) parameters, but Cox–Merz analogy became weakened. Besides, melt‐elasticity in terminal region and relaxation time (tc) in crossing point increased, indicating an enhancement in quasi‐solid behavior of molten PP. Comparing with the elastomers, rheological behaviors of molten PP were more influenced with adding the rigid fillers, especially with W due to distinct acicular shape of W particles. SEBS‐g‐MA elastomer more affected rheological behaviors of the ternary composites than SEBS elastomer, implying that SEBS elastomer and the filler particles behaved individually (i.e., development of separate microstructure) in (PP/GB)/SEBS and (PP/W)/SEBS ternary composites, but core‐shell microstructure developed with strong interfacial adhesion by adding SEBS‐g‐MA elastomer, and the filler particles encapsulated with the thick SEBS‐g‐MA elastomer interlayer (i.e., core‐shell particles) acted like neither big elastomer particles nor like individual rigid particles in melt‐state. Moreover, effects of SEBS‐g‐MA elastomer reached a maximum on rheological behaviors of (PP/W)/SEBS‐g‐MA ternary composite, indicating a synergy between core‐shell microstructure and acicular W particles. Correlations between oscillatory‐shear flow properties and microstructures of the blends and composites were evaluated using Cole–Cole (CC), Han–Chuang (HC), and van Gurp–Palmen (vGP) plots. COMPOS., 2012. © 2012 Society of Plastics  相似文献   

4.
This work was concerned with investigating the processing behavior of thermoplastics reinforced with a melt processable phosphate glass under extensional flows at temperatures used for forming and shaping operations. Injection molded blends consisting of polyetherimide (PEI) and polyphenylene sulfide (PPS) reinforced with 30‐60 wt% phosphate glass were exposed to uniaxial and planar deformation at temperatures above the Tg of the phosphate glass (234°C) to evaluate the effects on the morphology and mechanical properties of the composites. Tensile testing at elevated temperatures (250‐300°C) was used to evaluate the forming behavior and ascertain the conditions most suited for the deformation of the composite blends. A temperature approximately 35°C above the Tg of the P‐glass was found to offer conditions most conducive to the deformation of the PEI/P‐glass blends. The phosphate glass reinforced PEI was found to offer greater retention of properties and smoother surfaces than an E‐glass filled material when exposed to shearfree deformation similar to that seen in a process such as thermoforming. For PPS based composites, the application of planar shearfree deformation near the melting point of the PPS (≈︁ 283°C) resulted in the elongation of the phosphate glass phase which served to enhance the stiffness of the composite blends along the principal deformation direction.  相似文献   

5.
Liquid crystalline polymer–polyamide‐6 (LCP/PA6) composites containing 20 wt % LCP content were compatibilized by a random styrene–maleic anhydride copolymer (RSMA). The blending was performed via extrusion followed by injection molding. The LCP employed was a commercial copolyester, Vectra A950. The dynamic mechanical (DMA), rheological, thermal, and mechanical properties as well as the morphology of the composites were studied. The DMA and rheological results showed that RSMA is an effective compatibilizer for LCP/PA6 blends. The mechanical measurements showed that the stiffness, tensile strength, and toughness of the in situ composites are generally improved with increasing RSMA content. However, these mechanical properties deteriorated considerably when RSMA content was above 10 wt %. The drop‐weight dart impact test was also applied to analyze the toughening behavior of these composites. The results show that the maximum impact force (Fmax) and crack‐initiation energy (Einit) tend to increase with increasing RSMA content. From these results, it appeared that RSMA prolongs the crack‐initiation time and increases the energies for crack initiation and impact fracture, thereby leading to toughening of LCP/PA6 in situ composites. Finally, the correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1964–1974, 2000  相似文献   

6.
In this study, randomly oriented in situ composites based on liquid‐crystalline polymers (LCPs) were prepared by thermal compression moulding. The LCP employed was a semi‐flexible liquid‐crystalline copolyesteramide with 30 mol% of p‐aminobenzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The matrices were poly(butylene terephthalate) (PBT) and polyamide 66 (PA66). The rheological properties, compatibility and morphological structures of these in situ composites were investigated. The results showed that PA66‐LCP and PBT–LCP component pairs of the composites are miscible in the molten state, but partially compatible in the solid state. The ratios of viscosity, λ1 = ηLCPPA66 and λ2 = ηLCPPBT, are all greater than 1.0. However, the melt viscosity of the LCP/PBT and LCP/PA66 blend is much lower than that of PBT and PA66, and it decreases markedly with increasing LCP content. When the LCP/PA66 or LCP/PBT blends are compression moulded, the LCP/PA66 or LCP/PBT melts and flows easily due to their low viscosity, and the LCP phases in the melts deform easily along the flow directions, which are random. It leads to uniformly dispersed LCP micro‐fibres randomly orientation in the thermoplastic matrix due to the compatibility between the blending components. © 2003 Society of Chemical Industry  相似文献   

7.
A polyarylate Unitika U-Polymer 100 (PAR) was melt blended with a thermotropic liquid crystalline polymer (LCP) Vectra A950, and the processingmorphology-properties relations were investigated. Inclusion of LCP slightly reduced Tg of PAR. The PAR/LCP blend with the LCP content higher than 50 wt% exhibited a noticeable yield stress, particularly in the vicinity of crystal-to-nematic transition temperature (Tcn). LCP lowered the blend viscosity above Tcn and seemed to play a role as processing aid. The tensile strength of the blends was increased with increasing spin draw ratio and level of LCP, and the spinning temperature influenced tensile strength. The relaxation behavior under dynamic shear and resultant blend morphology based on WAXD and SEM analyses are discussed as well.  相似文献   

8.
A liquid crystalline polymer (LCP), Vectra B950, reinforced polycarbonate (PC) 60 wt%/polybutylene terephthalate (PBT) 40 wt% blend was studied using the injection molding process. Morphology and mechanical properties of ternary in situ LCP composites were investigated and compared with binary polycarbonate/Vectra B950 LCP composites. Good in situ fibrillation of LCP was observed in the direct injection-molded LCP composites. Preliminary results of this work indicate that addition of PBT improves skin-core distribution of LCP microfibrils in the matrix and also enhances adhesion between the matrix and Vectra B950, which contains terephthalic acid. The PC/PBT/LCP ternary system also exhibits lower viscosity than the PC/PBT blend and pure LCP. In a ternary system with 30 wt% of Vectra B950, tensile modulus and strength increase approximately threefold and twofold, respectively. The rule of mixtures (ROM) for continuous reinforcement can accurately represent the strengthening effects for the ternary LCP in situ composites. Generally, LCP reduces the ductility and impact strength of the thermoplastic blends; however, the relative loss is less in the ternary system than in the binary system.  相似文献   

9.
A high‐density polyethylene (HDPE) masterbatch containing 20.2 wt% multiwalled carbon nanotubes (MWNTs) was melt diluted with neat HDPE using two different methods: a twin screw microcompounder and a single‐screw extruder. The electrical properties of these composites were assessed using bulk electrical conductivity measurements, their mechanical properties were evaluated using tensile tests and dynamic mechanical analysis (DMA), and percent crystallinity was determined by wide angle x‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). A percolation threshold (pc) of 4.5 wt% MWNTs was found in compression‐molded samples. Extruded samples were prepared with nanotube concentrations below and above the compression‐molded percolation threshold (2 and 7 wt% MWNTs) and passed through the extruder twice before entering a low‐shear melt annealing zone. Different melt annealing times were used and their effects on the electrical and mechanical properties of the resulting quench‐cooled composites were evaluated. Results showed that extruded composites were nonconductive, indicating that a conductive nanotube network did not form on the time scale of these experiments. Annealing time also did not affect significantly the mechanical properties of the resulting solid composites. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
Ternary composites of glass fiber‐reinforced poly(p‐phenylene sulfide) (PPS/GF) filled with nanometric calcium carbonate (nano‐CaCO3) were prepared by means of a twin‐screw extruder. The nano‐CaCO3 surface was treated with stearate and treated with titanate, the composites being called SI composite system and SII composite system, respectively. The crystallization and heatproof properties of the PPS/GF/nano‐CaCO3 composites were measured using a differential scanning calorimeter, to investigate the influence of the nanometric filler content on the crystallinity. The results show that the variation of the starting crystallization temperature, crystallization temperature and crystallinity with an increase of the particle weigh fraction (?f) of SI composite system is different from that of SII composite system. When ?f is less than 4 wt%, the crystallinity of the two composite systems increases and then decreases slightly with increasing ?f. Moreover, the crystallization behavior and mechanisms are discussed. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Ternary blends of poly(p-phenylenesulfide) (PPS), thermotropic liquid crystalline polyesteramide (LCP), and polysulfone (PSF) were investigated in terms of processing characteristics, blend morphology, and physical properties. In the incompatible PPS/LCP blends, LCP imparted a nucleating effect to the crystallization of PPS. Up to 10wt% LCP content, the tensile properties of PPS/LCP blends were enhanced with increasing LCP content, but they deteriorated if the LCP content exceeded 20wt%. Addition of a third component, PSF, to the 90/10 PPS/LCP blend promoted development of rodlike or threadlike fibrillar structure and orientation of the deformed LCP domains, which led to improvement of tensile strength up to 20%.  相似文献   

12.
Blends of fluorocarbon elastomer (FKM) and liquid crystalline polymer (LCP) have been prepared by the melt mixing technique. Processing studies indicated the increase in viscosity with the addition of LCP. The tensile strength, tear strength, and modulus of the elastomer are greatly improved by the addition of the LCP. Dynamic mechanical analysis (DMA) results showed that the shift in the glass transition temperature (Tg) of the elastomer with the addition of LCP and the storage modulus of the blends increased above the Tg of FKM, whereas decreases below the Tg of the elastomer were seen with up to 20 wt% LCP; this suggests that the LCP acts as an effective reinforcing agent above the Tg of FKM. From the thermogravimetric analysis (TGA) and differential thermogravimetry (DTG), we found that the thermal stability of the elastomer enhances by blending with the LCP. The weight loss and the weight loss rate of the FKM decrease enormously with the addition of LCP. From the X‐ray diffraction (XRD) study, it has been observed that the LCP acts as a nucleating agent by increasing the crystallinity of the blend. The failure mechanism of the blends was studied using a scanning electron microscope (SEM). It suggested that the failure occurred in the blends; mainly due to the pull out of the fibrils from the matrix phase and due to lower interfacial adhesion between the LCP phase and the elastomer. POLYM. COMPOS. 26:306–315, 2005. © 2005 Society of Plastics Engineers  相似文献   

13.
The crystallization kinetics of blends made of poly(p-phenylene sulfide) (PPS) with a liquid crystalline polymer (LCP) was studied. The blends were found to be immiscible by dynamic mechanical thermal analysis (DMTA). Results of non-isothermal and isothermal crystallization experiments made by differential scanning calorimetry (DSC) showed that both components had their crystallization temperatures increased; also the LCP melting temperature was found to increase in the blends. It was concluded that the addition of LCP to the PPS increased the PPS overall crystallization rate due to heterogeneous nucleation. The fold interfacial free energy, σe of the PPS in the blends was observed not to vary with composition. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Microstructural characteristics of isotactic‐polypropylene/glass bead (iPP/GB) and iPP/wollastonite (iPP/W) composites modified with thermoplastic elastomers, poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) copolymer (SEBS) and corresponding block copolymer grafted with maleic anhydride (SEBS‐g‐MA), were investigated. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) showed that the iPP/SEBS and iPP/SEBS‐g‐MA blends were partially compatible two‐phase systems. Well‐dispersed spherical GB and acicular W particles without evidence of interfacial adhesion were observed in the iPP/GB and iPP/W binary composites respectively. Contrary to the blends, melt flow rates of the iPP/GB and PP/W composites decreased more with SEBS‐g‐MA than with SEBS because of enhanced interfacial adhesion with SEBS‐g‐MA elastomer. The SEM analyses showed that the ternary composites containing SEBS exhibited separate dispersion of the rigid filler and elastomer particles (i.e., separate microstructure). However, SEBS‐g‐MA elastomer not only encapsulated the spherical GB and acicular W particles completely with strong interfacial adhesion (i.e., core‐shell microstructure) but also dispersed separately throughout iPP matrix. In accordance with the SEM observations, the DSC and DMA revealed quantitatively that the rigid filler and SEBS particles in iPP matrix acted individually, whereas the rigid filler particles in the ternary composites containing SEBS‐g‐MA acted like elastomer particles because of the thick elastomer interlayer around the filler particles. The Fourier transform infrared analyses revealed an esterification reaction inducing the strong interfacial adhesion between the SEBS‐g‐MA phase and the filler particles. POLYM. COMPOS., 31:1265–1284, 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
A kind of novel CaF2:Nd microcrystal‐glass composites with high transmittance and long fluorescence lifetime were prepared by a two‐step melt‐quenching technique. Based on Mie theory, a theoretical estimate of the scattering losses was suggested for the microcrystal‐glass composites. By matching dispersion curve of the glass matrix and CaF2 microcrystal in the range of UV–Vis‐NIR, the transmittance can reach 83%. The effects of CaF2:Nd microcrystals/glass ratio on structure and optical properties were investigated. The composite sample‐doped 30 wt% CaF2:Nd nano/microcrystals exhibits long fluorescence lifetime of 518 μs at 1051 nm.  相似文献   

16.
Immiscible blends of poly(2,6‐dimethyl‐1,4‐phenylene ether)/poly(styrene‐co‐acrylonitrile) (PPE/SAN) were batch‐foamed using CO2 as a blowing agent as a function of foaming temperature, foaming time, and blend composition. Evaluation of the resulting cellular morphology revealed an enhanced foamability of SAN with PPE contents up to 20 wt% as indicated by a similar volume expansion but a significantly reduced mean cell size. This behavior is related to a heterogeneous nucleation activity by the dispersed PPE phase. A further increasing PPE content, however, leads to increasing foam densities as well as nonuniform foam morphologies. The changes in the foaming behavior can be correlated with the melt rheological properties and the corresponding blend morphology. Shear‐rheological investigations revealed an onset of percolation of the dispersed PPE phase between 20 and 40 wt%, and a transition towards cocontinuity at 60 wt%. The materials response under uniaxial elongational flow, as assessed by Rheotens measurements, revealed an increase in elongational viscosity scaling with the PPE content, similar to the shear data. However, the strain hardening behavior was reduced by increasing PPE contents and, at 20 wt%, the drawability revealed a significant drop‐both phenomena limiting the foamability of polymers. In summary, the present study discusses fundamental aspects of foaming immiscible PPE/SAN blends. POLYM. ENG. SCI., 48:2111–2125, 2008. © 2008 Society of Plastics Engineers  相似文献   

17.
The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead‐filled low‐density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999  相似文献   

18.
Blends of a poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared in a twin-screw extruder. Specimens for thermal properties were investigated by means of an instron capillary rheometer (ICR) and scanning electron microscopy (SEM). The blend viscosity showed a minimum at 10 wt% of LCP and increased with increasing LCP content above 10 wt% of LCP. Above 50% of LCP and at higher shear rate, phase inversion occured and the blend morphology was fibrous and similar to pure LCP. The ultimate fibrillar structure of LCP phase appeared to be closely related to the extrusion temperature. By employing a suitable deformation history, the LCP phase may be elongated and oriented such that a microfibrillar morphology can be retained in the solid state. Thermal properties of the LCP/PEN blends were studied using DSC and a Rheovibron viscoelastomer. These blends were shown to be incompatible in the entire range of the LCP content. For the blends, the Tg and Tm were unchanged. The half time of crystallization for the LCP/PEN blends decreased with increasing LCP content. Therefore, the LCP acted as a nucleating agent for the crystallization of PEN. The dimensional and thermal stability of the blends were increased with increasing LCP content. In studies of dynamic mechanical properties, the storage modulus (E′) was improved with increasing LCP content and synergistic effects were observed at 70 wt% of LCP content. The storage modulus for the LCP/PEN 70/30 blend is twice that of PEN matrix and exceeded pure LCP.  相似文献   

19.
The oscillatory shear rheological properties, mechanical performance, shrinkage, and morphology of polypropylene (PP)‐talc composites chemically coupled by maleic‐anhydride‐grafted polypropylene (MAPP) were studied. The samples were prepared in a co‐rotating L/D = 40, 25 mm twin‐screw extruder. Tensile tests carried out on injection‐molded samples showed a reinforcing effect of talc up to 20 wt% on PP. Upon using MAPP, the mechanical performance of PP‐30% talc showed a maximum of about 10% increase in tensile strength at 1.5 wt% of MAPP. A Newtonian plateau (η0) at the terminal zone was observed for the complex viscosity curve of pure PP and PP‐talc composites plotted against frequency up to 30 wt%. Upon increasing the talc content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that might be due to the formation of a network of filler agglomerates in the melt. Analysis of viscosity behavior in the power‐law region revealed that the flow behavior index‐n‐decreased from 0.45 for 10 wt% of talc down to about 0.4 for 40 wt% of talc. Upon increasing the talc content to 50 wt%, n decreased to a value even lower than that of the neat PP resin. The frequency of the crossover point represents molecular mobility and relaxation‐time behavior. The crossover frequency of the composites was nearly constant up to 30 wt% of talc and decreased at higher filler loadings. The optimum amount of coupling agent could be correlated with the minimum point in crossover frequency and crossover modulus. The shrinkage behavior of the composites with and without MAPP resin was studied and correlated with the rheological properties. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

20.
The miscibility in the melt and solid state of blends made of poly(p-phenylene sulphide) (PPS) with a liquid crystalline polymer (LCP) from DuPont was studied by polarized light optical microscopy (PLOM) and dynamic thermal mechanical analysis. Both techniques showed that the PPS and the LCP are immiscible in both states, and that the critical concentration for the formation of fibrils C*, in this particular system, was located between 20 and 25 wt % LCP. The resultant blend morphology was studied by PLOM and scanning electron microscopy (SEM). It was observed that when LCP fibrils are formed in the PPS matrix, the PPS macromolecules will crystallize around the LCP fibrils by forming columnar layers called transcrystallites. These transcrystallites are the result of the LCP acting as a nucleating agent for the PPS, promoting heterogeneous nucleation. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号