首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红黏土是一种典型的特殊土,土体性质极不稳定,特别是遇水强度快速衰减,容易引发地基沉降或边坡坍塌等工程地质灾害。通过开展棕榈丝改良红黏土的无侧限抗压强度试验,研究不同棕榈丝掺量及长度对红黏土无侧限抗压强度的影响。结果表明,随棕榈丝掺量的增大,棕榈丝加筋土的无侧限抗压强度相应增加;随棕榈丝长度的增大,棕榈丝加筋土的无侧限抗压强度先增大后减小,棕榈丝加筋土的最优棕榈丝长度为20mm。棕榈丝可有效控制土体的变形,提高土体的残余强度。  相似文献   

2.
为了研究冻融循环作用对玄武岩纤维增强高掺量石粉-混凝土力学性质的影响,通过冻融循环试验、无侧限抗压强度试验以及非线性超声波测试,研究了高掺量石粉对混凝土无侧限抗压强度的影响,在此基础上探讨了养护龄期、纤维掺量、纤维长度、冻融循环次数等参数对玄武岩纤维增强高掺量石粉-混凝土力学性质的影响。研究结果表明:冻融循环作用对混凝土的强度影响较大,而添加玄武岩纤维可以有效缓解混凝土在冻融循环条件下的强度损失,提高其抵抗冻融破坏的能力;在试验条件下,最优纤维掺量为5 kg/m3,最佳纤维长度为12 mm;另外,养护龄期的延长有助于提高混凝土的无侧限抗压强度,且同一冻融循环次数下,养护龄期为76 d的试块强度要高于养护龄期为28 d的试块;通过非线性超声波测试,得到试块的声波交流有效值随着冻融循环次数的增加而大幅度衰减,同一冻融循环次数下,掺入玄武岩纤维的试块的交流有效值略高于未掺入纤维的试块。对玄武岩增强高掺量石粉-混凝土在严寒地区的工程应用提供一定参考。  相似文献   

3.
通过研究玄武岩纤维长度分别为3,6,12,20,35 mm,纤维质量掺入量分别为0,0. 1%,0. 3%,0. 5%和0. 7%的条件下,养护龄期分别为7,14,28 d的纤维水泥土无侧限抗压强度,分析了纤维掺量、纤维长度及养护龄期对玄武岩纤维水泥加固河床淤泥土的力学性质的影响。试验结果表明:玄武岩纤维能有效提高水泥土抵抗变形的能力;纤维水泥土的无侧限抗压强度随着养护龄期的增加而提高;同一纤维长度条件下,随着纤维掺量的增加,纤维水泥土的无侧限抗压强度提高,但在同一纤维掺量的条件下,纤维水泥土的无侧限抗压强度随纤维长度的变化不明显。  相似文献   

4.
改性聚丙烯纤维和水泥加固黄土的力学性能   总被引:1,自引:0,他引:1  
为研究改性聚丙烯纤维和水泥加固黄土的力学性能,通过无侧限抗压强度试验和劈裂抗拉强度试验,对不同纤维掺量、水泥掺量、养护龄期和纤维长度的试件在浸水和未浸水条件下的力学性能进行研究.结果表明:改性聚丙烯纤维和水泥的共同加固作用对提高黄土的早期无侧限抗压强度贡献最大,3d龄期的无侧限抗压强度达3.65~5.99MPa;随着水泥掺量的增大,试件呈现明显的脆性破坏特征,纤维的掺入可改善试件的脆性破坏模式;随着纤维掺量的增大,试件破坏特征呈现由脆性破坏向延性、塑性破坏过渡的趋势;改性聚丙烯纤维加筋水泥稳定土的最佳纤维掺量为0.30%~0.45%(质量分数),最佳纤维长度为12mm.由破坏性状分析可知,水泥稳定土试件受压易产生脆裂破坏,改性聚丙烯纤维在水泥稳定土中的"桥梁"连接作用使得加固试件受压破坏时的整体性较好.  相似文献   

5.
为了改善水泥固化软土存在的不足,采用聚丙烯纤维-水泥对广州南沙软土进行固化,分析探讨了纤维水泥固化土的受压破坏方式以及纤维掺量、纤维长度、水泥掺量、龄期对纤维水泥固化土无侧限抗压强度的影响。试验结果表明:在水泥土中掺入纤维能在一定程度上提高其无侧限抗压强度,且在一定范围内,无侧限抗压强度随纤维掺量和纤维长度的增加而增大;纤维水泥土中水泥的最优掺量为12%;纤维水泥土的无侧限抗压强度随着龄期的增长而增大,并且早期强度增长较快,后期增长较慢并趋于稳定;纤维能增加水泥土的抗拉强度,减少水泥土试样破坏时的裂缝宽度和数量,改善它们的脆性破坏形式。  相似文献   

6.
选取粘性土这一季冻区具有代表性的路基土的作为研究对象,向其掺加聚丙烯纤维,以不同冻融次数、不同纤维长度以及不同纤维掺量为控制参数,通过单轴试验进行无侧限抗压强度指标,分析其变化规律,研究聚丙烯纤维土在冻融循环作用下的无侧限抗压强度(q_u)的增强特性。  相似文献   

7.
为研究纤维种类对纤维加筋土无侧限抗压强度的影响规律,选用玻璃纤维土、碳纤维土、聚丙烯纤维土为研究对象,通过正交试验,得到了纤维种类、纤维长度以及纤维掺量三个因素对纤维加筋土无侧限抗压强度的影响规律。  相似文献   

8.
玄武岩纤维水泥稳定碎石作为一种新型工程材料正逐步应用于道路基层中,文中针对玄武岩纤维水泥稳定碎石在水泥掺量、玄武岩纤维掺量、养护龄期3种因素影响下的无侧限抗压强度进行试验研究。通过研究表明,3种因素中玄武岩纤维掺量在0~0.8‰范围内变化时,水泥稳定碎石无侧限抗压强度随着纤维掺量增加逐渐提高,通过灰关联分析法得到3种影响因素排序为水泥掺量玄武岩纤维掺量养护龄期。  相似文献   

9.
《Planning》2020,(6)
为了研究聚丙烯纤维掺量对水泥土强度增长机理的影响,分别进行了不同聚丙烯纤维掺量下的水泥土无侧限抗压强度试验、劈裂抗拉强度试验和电镜扫描试验,得到了聚丙烯纤维水泥土无侧限抗压强度、劈裂抗拉强度的变化规律,分析了能量演化特征和内部微观结构。试验结果表明:随着聚丙烯纤维掺量的增加,水泥土的无侧限抗压强度、劈裂抗拉强度和强度增益比均呈现先增大后减小的趋势,且离散程度整体较小。当聚丙烯纤维掺量为0.4%时,无侧限抗压强度和劈裂抗拉强度达到最大值,分别为4.18 MPa和0.74 MPa,比素水泥土分别提高了13.28%和23.33%,强度增益比大于1;无侧限抗压强度试验和劈裂抗拉强度试验中,总能量、弹性应变能均达到最大值,分别为0.072 1 MJ/m~3、0.063 7 MJ/m~3和0.004 04 MJ/m~3、0.003 37 MJ/m~3。耗散能在无侧限抗压强度试验中整体上呈现下降趋势,而在劈裂抗拉强度试验中却呈现先减小后增大的趋势。  相似文献   

10.
为研究合成纤维加筋无机稳定土的效果,开展无侧限抗压强度的正交试验,文章分别研究纤维种类、纤维掺量和纤维长度对纤维加筋无机稳定土无侧限抗压强度的影响。试验结果表明,三种因素对纤维加筋无机稳定土无侧限抗压强度影响的显著性大致为纤维种类纤维掺量纤维长度。同时结果表明,水泥土的最佳配比为聚酯纤维、掺量0.5%、长度9mm;石灰土的最佳配比为聚乙烯醇、掺量0.3%、长度9mm;粉煤灰土的最佳配比为聚酯纤维、掺量0.5%、长度9mm。在实际工程中,可根据工程实际需求,合理选用。  相似文献   

11.
选取长度为6、12、18 mm的玄武岩纤维、聚丙烯纤维作为透水混凝土增强材料。研究在单掺玄武岩纤维及混掺玄武岩-聚丙烯纤维条件下,纤维长度与掺量对透水混凝土力学性能及透水性能的影响。结合人工神经网络,将玄武岩纤维长度、玄武岩纤维掺量、聚丙烯纤维长度、聚丙烯纤维掺量作为人工神经网络输入层,将抗压强度、透水系数作为人工神经网络输出层,通过对试验组进训练,确定隐藏层数量,建立人工神经网络模型。通过测试组验证人工神经网络模型,证明了人工神经网络工具在解决多参数影响下模型建立问题的优异性。  相似文献   

12.
为了研究纤维加筋土体在不同纤维长度时的无侧限抗压强度变化规律,通过加入不同长度的聚丙烯纤维,对不同土体进行无侧限抗压强度试验,得到三种不同土体的无侧限抗压强度值,并与各自素土的无侧限抗压强度进行比较,得到的结果为相关地区的工程实践提供了参考依据。  相似文献   

13.
文中研究了芦苇秸秆纤维长度、纤维掺量、水泥土龄期等因素,及其对芦苇秸秆水泥土的无侧限抗压强度的影响。试验结果表明:芦苇秸秆纤维的掺入可提高水泥土的无侧限抗压强度,在水泥掺入比为15%的情况下,芦苇秸秆水泥土的最优加筋条件为纤维长度5mm、纤维掺量0.1%;当纤维长度大于5mm或纤维掺量大于0.1%时,芦苇秸秆水泥土的无侧限抗压强度均呈下降趋势;芦苇秸秆纤维水泥土无侧限抗压强度的早期增长速度大于后期,芦苇秸秆纤维的掺入有利于水泥土早期无侧限抗压强度的增长。  相似文献   

14.
山东黄泛区粉土分布广泛,在铁路路基填料紧缺的情况下,常用改良粉土作为路基填料。选用纳米二氧化硅和石灰作为改良剂,对黄泛区粉土进行改良,并通过击实试验以及无侧限抗压强度试验对其强度进行测定,发现纳米二氧化硅石灰改良粉土虽然强度有显著提升,但也呈现出脆性较大的不良特性。为改善纳米二氧化硅石灰改良粉土的脆性,在改良粉土中加入聚丙烯纤维,并通过试验研究了纤维掺量和长度对纳米二氧化硅石灰改良粉土强度和脆性的影响,确定纤维的最优掺量和最优长度。结果表明:纤维的加入能改善纳米二氧化硅石灰改良粉土的脆性,提高其抗压及抗剪强度;当纤维掺量为0.4%、纤维长度为2cm时,改良效果最好。  相似文献   

15.
文中对玄武岩纤维加筋水泥土的无侧限抗压强度进行了研究。在水泥掺量、水灰比一定的基础上,研究了不同的玄武岩纤维掺量对水泥土无侧限抗压强度的影响。研究结果表明,玄武岩纤维的掺量对水泥土的抗压强度有显著的提升作用,但其增幅会随着掺量的增加而有所减缓;随着养护龄期的增长,水泥土的抗压强度也随之增大;玄武岩纤维的掺入提高了水泥土的韧性和整体稳定性。  相似文献   

16.
《土工基础》2020,(1):73-75
水泥稳定碎石的水稳性和抗冻性比石灰稳定土好,为研究玄武岩-玻璃混杂纤维水泥稳定碎石的无侧限抗压强度变化规律和提高稳定性的机理,通过改变水泥稳定碎石中的玄武岩纤维含量、玻璃纤维含量进行无侧限抗压强度试验,得出在25 mm玄武岩纤维掺量为1.0‰、12 mm玻璃纤维掺量为0.8‰时无侧限抗压强度最大值为4.63 MPa,可为今后公路工程提供一些有意义的参考。  相似文献   

17.
聚丙烯纤维加筋膨胀土强度试验研究   总被引:1,自引:0,他引:1  
吴继玲  张小平 《土工基础》2010,24(6):71-73,76
为了研究聚丙烯纤维对膨胀土强度的影响,进行了大量的室内试验。试验结果表明,纤维膨胀土的强度比素土有了明显的提高,且随着纤维含量的增加,无侧限抗压强度增加,当纤维含量为0.3%时,无侧限抗压强度和纤维土的粘聚力达到最大值,随着纤维含量的继续增加,无侧限抗压强度和粘聚力降低,说明0.3%的纤维含量为最优含筋量。相同纤维含量的情况下,纤维土的强度随着纤维长度的增加而明显增加。同时聚丙烯纤维还可以增加纤维膨胀土的峰值强度,降低纤维膨胀土残余强度的损失,增加土样破坏的韧性,延缓破坏。  相似文献   

18.
水泥固化土中掺入聚丙烯纤维,可以对土体强度进行一定的改良。本文以聚丙烯纤维掺量为研究变量,掺入0%、0.1%、0.2%、0.4%的9mm长纤维和15%水泥,制备纤维水泥土,通过无侧限抗压强度试验和常规三轴试验,分析了聚丙烯纤维掺量对水泥土强度特性的影响。试验结果表明:纤维水泥土的无侧限抗压强度随纤维含量的增加而增强,纤维含量对纤维水泥土无侧限抗压强度的提高效果很明显。28d龄期掺入0.4%纤维的水泥土,其无侧限抗压强度是不掺纤维水泥土的1.60倍。纤维的掺入能提高水泥土的峰值应力和增大破坏应变,并且随纤维含量的增加,水泥土的粘聚力逐渐增大,而其内摩擦角却变化不大。纤维水泥土在受压过程中,纤维的掺入能够为土体提供一定的拉应力,从而能在一定程度上阻止试样裂缝的开展。  相似文献   

19.
设计正交试验研究秸秆尺寸、玄武岩纤维、减水剂、柠檬酸对秸秆-氯氧镁水泥复合材料抗压和抗折强度的影响,并通过单因素试验研究玄武岩纤维的掺量和长度对复合材料强度的影响,采用电镜扫描探究其改性机理。结果表明:秸秆尺寸对秸秆-氯氧镁水泥复合材料强度的影响最大,秸秆尺寸越小,材料的抗压强度越高,材料的抗折强度随秸秆尺寸的增大而提高;玄武岩纤维能够改善材料的力学性能,纤维长度为6 mm时分散性好,增强效果明显,且材料的力学性能随着纤维掺量的增加而提高;纤维长度为12mm时,纤维容易抱团而使材料强度降低;减水剂和柠檬酸的增强效果不明显。综合考虑材料的抗折和抗压强度,确定最优方案为:秸秆尺寸小于2.36 mm,玄武岩纤维长度6 mm、掺量5 kg/m3,减水剂掺量0.2%,柠檬酸掺量1%。  相似文献   

20.
为了研究玄武岩纤维对RAC早期抗压强度的影响,对10组120个再生粗骨料替代率为50%的玄武岩纤维RAC进行试验研究,分析了不同掺量以及不同掺量长度的玄武岩纤维对RAC早期抗压强度的影响,研究结果表明:在RAC中掺入定量的纳米SiO_2后再掺入不同量不同长度的玄武岩纤维,随着玄武岩纤维掺量及掺量长度的增加其RAC立方体抗压强也在增加,其中玄武岩纤维掺量的变化对RAC抗压强度的影响比掺量长度的变化对RAC抗压强度的影响明显;玄武岩掺量一定时,随着玄武岩纤维掺量的长度的增加RAC抗压强度也随之增加;并且当玄武岩纤维掺量和掺量长度均增加时,随着龄期的增加,其后期28 d时的各掺量下玄武岩纤维掺量长度为18、14 mm两者的抗压强度越来越接近;各玄武岩纤维掺量下RAC不同龄期下的增长速度呈现先快后慢的大体趋势。通过对玄武岩纤维RAC进行研究,为工程实际运用提供借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号