首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that the performance of TCP deteriorates in a mobile wireless environment. This is due to the fact that although the majority of packet losses are results of transmission errors over the wireless links, TCP senders still take packet loss as an indication of congestion, and adjust their congestion windows according to the additive increase and multiplicative decrease (AIMD) algorithm. As a result, the throughput attained by TCP connections in the wireless environment is much less than it should be. The key problem that leads to the performance degradation is that TCP senders are unable to distinguish whether packet loss is a result of congestion in the wireline network or transmission errors on the wireless links. In this paper, we propose a light‐weight approach, called syndrome, to improving TCP performance in mobile wireless environments. In syndrome, the BS simply counts, for each TCP connection, the number of packets that it relays to the destination host so far, and attaches this number in the TCP header. Based on the combination of the TCP sequence number and the BS‐attached number and a solid theoretical base, the destination host will be able to tell where (on the wireline or wireless networks) packet loss (if any) occurs, and notify TCP senders (via explicit loss notification, ELN) to take appropriate actions. If packet loss is a result of transmission errors on the wireless link, the sender does not have to reduce its congestion window. Syndrome is grounded on a rigorous, analytic foundation, does not require the base station to buffer packets or keep an enormous amount of states, and can be easily incorporated into the current protocol stack as a software patch. Through simulation studies in ns‐2 (UCB, LBNL, VINT network simulator, http://www‐mash.cs.berkeley.edu/ns/ ), we also show that syndrome significantly improves the TCP performance in wireless environments and the performance gain is comparable to the heavy‐weight SNOOP approach (either with local retransmission or with ELN) that requires the base station to buffer, in the worst case, a window worth of packets or states. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
There is growing interest in the use of wireless mesh network (WMN) as a last‐mile option for Internet access. Despite the many benefits of WMNs, the performance of Internet access may not be ideal. One of the main issues is the interaction of transmission control protocol (TCP) with the underlying network. The poor performance of TCP over multi‐hop networks is well‐documented, and extensive research exists, which addresses TCPs foible and enhance TCP performance for multi‐hop environments. This paper provides a thorough survey of TCP performance issues over WMNs and the available solutions to address these issues. Among the existing methods, we focused on network coding (NC) and the ways that TCP interacts with network coded systems. NC is a technique that encodes the received packets in each node before forwarding them towards the destination. The use of NC in the transport layer to address performance issues raised by wireless access is a recent research topic. This paper presents a detailed study of TCP interaction with NC. Some open research areas in this field are suggested. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
While Transmission Control Protocol (TCP) Performance Enhancing Proxy (PEP) solutions have long been undisputed to solve the inherent satellite problems, the improvement of the regular end‐to‐end TCP congestion avoidance algorithms and the recent emphasis on the PEPs drawbacks have opened the question of the PEPs sustainability. Nevertheless, with a vast majority of Internet connections shorter than ten segments, TCP PEPs continue to be required to counter the poor efficiency of the end‐to‐end TCP start‐up mechanisms. To reduce the PEPs dependency, designing a new fast start‐up TCP mechanism is therefore a major concern. But, while enlarging the Initial Window (IW) up to ten segments is, without any doubt, the fastest solution to deal with a short‐lived connection in an uncongested network, numerous researchers are concerned about the impact of the large initial burst on an already congested network. Based on traffic observations and real experiments, Initial Spreading has been designed to remove those concerns whatever the load and type of networks. It offers performance similar to a large IW in uncongested network and outperforms existing end‐to‐end solutions in congested networks. In this paper, we show that Initial Spreading, taking care of the satellite specificities, is an efficient end‐to‐end alternative to the TCP PEPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
TCP error control mechanism lacks the ability to detect with precision the nature of potential errors during communication. It is only capable of detecting the results of the errors, namely that segments are dropped. As a result, the protocol lacks the ability to implement an appropriate error recovery strategy cognizant of current network conditions and responsive to the distinctive error characteristics of the communication channel. TCP sender always calls for the sending window to shrink. We show that probing mechanisms could enhance the error detection capabilities of the protocol. TCP could then flexibly adjust its window in a manner that permits the available bandwidth to be exploited without violating the requirements of stability, efficiency and fairness that need to be guaranteed during congestion. Our experiments have three distinct goals: First, to demonstrate the potential contribution of probing mechanisms. A simple probing mechanism and an immediate recovery strategy are grafted into TCP‐Tahoe and TCP‐Reno. We show that, this way, standard TCP can improve its performance without requiring any further change. Second, to study the performance of adaptive strategies. An adaptive TCP with probing is used, that is responsive to the detected error conditions by alternating slow start, fast recovery and immediate recovery. An adaptive error recovery strategy can yield better performance. Third, to study the design limitations of the probing device itself. The aggressive or conservative nature of the probing mechanisms themselves can determine the aggressive or conservative behaviour of the protocol and exploit accordingly the energy/throughput trade‐off. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we study the performance of the transmission control protocol (TCP) over mobile ad‐hoc networks. We present a comprehensive set of simulation results and identify the key factors that impact TCP's performance over ad‐hoc networks. We use a variety of parameters including link failure detection latency, route computation latency, packet level route unavailability index, and flow level route unavailability index to capture the impact of mobility. We relate the impact of mobility on the different parameters to TCP's performance by studying the throughput, loss‐rate and retransmission timeout values at the TCP layer. We conclude from our results that existing approaches to improve TCP performance over mobile ad‐hoc networks have identified and hence focused only on a subset of the affecting factors. In the process, we identify a comprehensive set of factors influencing TCP performance. Finally, using the insights gained through the performance evaluations, we propose a framework called Atra consisting of three simple and easily implementable mechanisms at the MAC and routing layers to improve TCP's performance over ad‐hoc networks. We demonstrate that Atra improves on the throughput performance of a default protocol stack by 50%–100%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Wang  S.Y.  Kung  H.T. 《Wireless Networks》2001,7(3):221-236
We propose using the TCP decoupling approach to improve a TCP connection's goodput over wireless networks. The performance improvement can be analytically shown to be proportional to , where MTU is the maximum transmission unit of participating wireless links and HP_Sz is the size of a packet containing only a TCP/IP header. For example, on a WaveLAN [32] wireless network, where MTU is 1500 bytes and HP_Sz is 40 bytes, the achieved goodput improvement is about 350%. We present experimental results demonstrating that TCP decoupling outperforms TCP reno and TCP SACK. These results confirm the analysis of performance improvement.  相似文献   

7.
Wireless packet ad hoc networks are characterized by multi‐hop wireless connectivity and limited bandwidth competed among neighboring nodes. In this paper, we investigate and evaluate the performance of several prevalent TCP algorithms in this kind of network over the wireless LAN standard IEEE 802.11 MAC layer. After extensively comparing the existing TCP versions (including Tahoe, Reno, New Reno, Sack and Vegas) in simulations, we show that, in most cases, the Vegas version works best. We reveal the reason why other TCP versions perform worse than Vegas and show a method to avoid this by tuning a TCP parameter— maximum window size. Furthermore, we investigate the performance of these TCP algorithms when they run with the delayed acknowledgment (DA) option defined in IETF RFC 1122, which allows the TCP receiver to transmit an ACK for every two incoming packets. We show that the TCP connection can gain 15 to 32 per cent good‐put improvement by using the DA option. For all the TCP versions investigated in this work, the simulation results show that with the maximum window size set at approximately 4, TCP connections perform best and then all these TCP variants differ little in performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The transmission control protocol (TCP) is one of the most important Internet protocols. It provides reliable transport services between two end‐hosts. Since TCP performance affects overall network performance, many studies have been done to model TCP performance in the steady state. However, recent researches have shown that most TCP flows are short‐lived. Therefore, it is more meaningful to model TCP performance in relation to the initial stage of short‐lived flows. In addition, the next‐generation Internet will be an unified all‐IP network that includes both wireless and wired networks integrated together. In short, modelling short‐lived TCP flows in wireless networks constitutes an important axis of research. In this paper, we propose simple wireless TCP models for short‐lived flows that extend the existing analytical model proposed in [IEEE Commun. Lett. 2002; 6 (2):85–88]. In terms of wireless TCP, we categorized wireless TCP schemes into three types: end‐to‐end scheme, split connection scheme, and local retransmission scheme, which is similar to the classification proposed in [IEEE/ACM Trans. Networking 1997; 756–769]. To validate the proposed models, we performed ns‐2 simulations. The average differences between the session completion time calculated using the proposed model and the simulation result for three schemes are less than 9, 16, and 7 ms, respectively. Consequently, the proposed model provides a satisfactory means of modelling the TCP performance of short‐lived wireless TCP flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
无线网络中一种改进的TCP拥塞控制机制   总被引:2,自引:0,他引:2  
由于无线网络中存在高误码、信号衰落、切换等原因,使传统TCP的应用受到了挑战。本文提出了一种新的无线网络拥塞控制方案—MRBR算法,它根据RTT值的变化对Reno协议进行修改,区分网络拥塞和无线链路差错,然后针对不同的原因,选取正确的参数实施拥塞控制。MRBR算法只需修改协议的发送部分,并且可以与Reno兼容。仿真结果表明,该方法增强了网络对拥塞以及随机差错的判断处理能力,有效提高了网络的吞吐量。  相似文献   

10.
Mobile IP is a network layer protocol for handling mobility of hosts in the Internet. However, mobile IP handoff causes degradation of TCP performance. Hence, there is a need for improving performance of TCP over mobile IP in wireless mobile networks. We propose an approach which handles losses due to both wireless link errors and host mobility. To handle losses due to host mobility, a method for seamless handoff is proposed. Empirical results show that the scheme provides substantial improvement of performance.
Sakib A. MondalEmail:

Sakib A. Mondal   is a Senior Researcher at General Motors Research. He has received his doctorate in Management Information Systems from Indian Institute of Management Calcutta, and has worked for almost twelve years in various areas of Information Technology. His research interests include mobile and distributed computing, performance engineering, optimization and heuristic search.   相似文献   

11.
2.5 Generation (2.5G) and Third Generation (3G) cellular wireless networks allow mobile Internet access with bearers specifically designed for data communications. However, Internet protocols under‐utilize wireless wide area network (WWAN) link resources, mainly due to large round trip times (RTTs) and request‐‐reply protocol patterns. Web browsing is a popular service that suffers significant performance degradation over 2.5G and 3G. In this paper, we review and compare the two main approaches for improving web browsing performance over wireless links: (i) using adequate end‐to‐end parameters and mechanisms and (ii) interposing a performance enhancing proxy (PEP) between the wireless and wired parts. We conclude that PEPs are currently the only feasible way for significantly optimizing web browsing behavior over 2.5G and 3G. In addition, we evaluate the two main current commercial PEPs over live general packet radio service (GPRS) and universal mobile telecommunications system (UMTS) networks. The results show that PEPs can lead to near‐ideal web browsing performance in certain scenarios. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
In Multi-Hop Wireless Networks (MHWNs), wireless nodes cooperate to forward traffic between end points that are not in direct communication range. Specifically, traffic is forwarded from a source towards its destination through intermediate nodes that form a wireless multi-hop chain. Researchers have studied the performance of TCP over chains discovering properties such as how the number of hops reduces chain throughput as neighboring links contend for the shared medium. Moreover, the presence of hidden terminals has also been shown to negatively affect performance of example chains. In this paper, we leverage recent characterization of how competing wireless links interact to develop an in-depth analysis of TCP performance over wireless chains. In particular, there are a number of possible modes of interference between competing links with distinct implications on performance and fairness; to our knowledge, this is the first work that studies the impact of these different modes on TCP chain performance. We classify chains according to interference modes considering both the forward (data) and reverse (acknowledgment) traffic. Chain geometry limits the types of chains that arise most frequently in practice. We evaluate TCP performance over the most frequently occurring chain types and observe significant performance differences between chains that have the same hop count. Different four-hop chains, for example, show a throughput difference of up to 25% and a retransmission overhead difference of over 90%. We discuss the implications of these differences on network performance: specifically, route instability and bandwidth usage generated. We extend this analysis to two single-hop TCP flows and quantify the effect of interference interactions between two flows. This study is a first step towards completely understanding the performance of multiple TCP flows over multiple hops in a MHWN.  相似文献   

13.
In this paper, we propose an analytical cross‐layer model for a Transmission Control Protocol (TCP) connection running over a covariance‐stationary wireless channel with a completely reliable Automatic Repeat reQuest scheme combined with Forward Error Correction (FEC) coding. Since backbone networks today are highly overprovisioned, we assume that the wireless channel is the only one bottleneck in the system which causes packets to be buffered at the wired/wireless interface and dropped as a result of buffer overflow. We develop the model in two steps. At the first step, we consider the service process of the wireless channel and derive the probability distribution of the time required to successfully transmit an IP packet over the wireless channel. This distribution is used at the next step of the modeling, where we derive expressions for the TCP long‐term steady‐state throughput, the mean round‐trip time, and the spurious timeout probability. The developed model allows to quantify the joint effect of many implementation‐specific parameters on the TCP performance over both correlated and non‐correlated wireless channels. We also demonstrate that TCP spurious timeouts, reported in some empirical studies, do not occur when wireless channel conditions are covariance‐stationary and their presence in those measurements should be attributed to non‐stationary behavior of the wireless channel characteristics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Because of the practical limitations of the energy and processing capabilities, the deployment of many Wireless Sensor Networks (WSN) is facing two main challenges of increasing network lifetime and reducing End to End Delay (EED) which become critical when the nodes are mobile and use non‐rechargeable energy sources. One way to help to extend network lifetime is using fuzzy logic in a form of artificial intelligence. To this end we propose a new routing protocol for using mobile WSNs, which holds the nodes in an equal level of energy and decreases energy dissipation of the network. An optimum path is selected based on the cost of each node to increase network lifetime. In order to lessen EED, we also attempt to design a novel zoning‐scheme for the network area. In this scheme, zonation is dynamic and works based on the Data Link (DL) position. The simulation result shows a significant improvement in lifetime and EED by proposed protocol compared with existing protocols. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
针对TCP在无线环境中性能下降问题,本文提出一种基于主动网络技术的方案,来改善无线链路上的TCP性能.通过网络仿真,证明这种方案具有更高的性能和更多的优点.  相似文献   

16.
Wireless networks are being increasingly employed to provide mobile access to network services. In most existing standards, reliable transmission on the wireless medium is achieved through the introduction of ARQ schemes at MAC layer, a strategy which is also employed by TCP for reliable end‐to‐end data delivery. The paper proposes an approach to overcome the performance degradation deriving from the duplicate ARQ strategies implemented at the transport and MAC layers by introducing a cross‐layer solution to reduce un‐necessary transmissions on the wireless medium. Furthermore, the paper describes how the proposed scheme, called ARQ Proxy, can be deployed in three different wireless technologies (3G Long‐Term Evolution, Wi‐Fi, and WiMAX) and provides extensive validation of the achievable improvement through simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
胡勇  黄本雄 《信息通信》2007,20(2):68-70
随着无线网络的迅速发展,如何改进TCP在无线网络中的传输性能这一课题,已经成为国内外研究的热点.文章分析了现有的几种典型的TCP改进方案,并在此基础上介绍一种新的跨层方案.通过在传输层和链路层之间引入ARQ Snoop代理,在链路层检测并重传ARQ分组的同时,协调WLAN MAC子层的ARQ机制与TCP的ARQ策略.  相似文献   

18.
Transmission Control Protocol (TCP) performance over Digital Video Broadcasting—Return Channel via Satellite (DVB‐RCS) standard is greatly affected by the total delay, which is mainly due to two components, propagation delay and access delay. Both are significant because they are dependent on the long propagation path of the satellite link. The former is intrinsic and due to radio wave propagation over the satellite channel for both TCP packets and acknowledgements. It is regulated by the control loop that governs TCP. The latter is due to the control loop that governs the demand assignment multiple access (DAMA) signalling exchange between satellite terminals and the network control center, necessary to manage return link resources. DAMA is adopted in DVB‐RCS standard to achieve flexible and efficient use of the shared resources. Therefore, performance of TCP over DVB‐RCS may degrade due to the exploitation of two nested control loops also depending on both the selected DAMA algorithm and the traffic profile. This paper analyses the impact of basic DAMA implementation on TCP‐based applications over a DVB‐RCS link for a large set of study cases. To provide a detailed overview of TCP performance in DVB‐RCS environment, the analysis includes both theoretical approach and simulation campaign. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers the problem of localizing a group of targets whose number is unknown by wireless sensor networks. At each time slot, to save energy and bandwidth resources, only part of sensor nodes are scheduled to activate to remain continuous monitoring of all the targets. The localization problem is formulated as a sparse vector recovery problem by utilizing the spatial sparsity of targets’ location. Specifically, each activated sensor records the RSS values of the signals received from the targets and sends the measurements to the sink node where a compressive sampling‐based localization algorithm is conducted to recover the number and locations of targets. We decompose the problem into two sub‐problems, namely, which sensor nodes to activate, and how to utilize the measurements. For the first subproblem, to reduce the effect of measurement noise, we propose an iterative activation algorithm to re‐assign the activation probability of each sensor by exploiting the previous estimate. For the second subproblem, to further improve the localization accuracy, a sequential recovery algorithm is proposed, which conducts compressive sampling on the least squares residual of the previous estimate such that all the previous estimate can be utilized. Under some mild assumptions, we provide the analytical performance bound of our algorithm, and the running time of proposed algorithm is given subsequently. Simulation results demonstrate the effectiveness of our algorithms.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Analysis of TCP Performance over Mobile Ad Hoc Networks   总被引:27,自引:0,他引:27  
Holland  Gavin  Vaidya  Nitin 《Wireless Networks》2002,8(2-3):275-288
Mobile ad hoc networks have attracted attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recent research has focused primarily on the routing protocols needed in such an environment. In this paper, we investigate the effects that link breakage due to mobility has on TCP performance. Through simulation, we show that TCP throughput drops significantly when nodes move, due to TCP's inability to recognize the difference between link failure and congestion. We also analyze specific examples, such as a situation where throughput is zero for a particular connection. We introduce a new metric, expected throughput, for the comparison of throughput in multi-hop networks, and then use this metric to show how the use of explicit link failure notification (ELFN) techniques can significantly improve TCP performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号