首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
采用自制的全金属氢化物吸放氢实验装置,恒温等容条件下测定LaNi_(4.25)Al_(0.75)材料吸氕、氘、氚单质气体的压力-组成等温线(P-C-T曲线),并根据Van’t Hoff(范特霍夫)方程得到LaNi_(4.25)Al_(0.75)吸氕、氘、氚形成氢化物相的热力学参数焓变ΔH分别为:-44.5、-45.0、-47.1kJ·mol-1,熵变ΔS分别为:-118.0、-121.8、-127.5J·mol~(-1)·K~(-1)。结果表明:LaNi_(4.25)Al_(0.75)材料吸收氕、氘、氚单质气体,在温度较低时,同位素效应不明显;温度高于100℃时,热力学同位素效应显著。相同温度、吸气容量条件下,吸气平衡压力从低到高依次是氕、氘和氚,其反应焓变和熵变从小到大依次是氚、氘和氕。结果表明,LaNiAl合金吸氢的热力学同位素效应依赖于温度的变化。  相似文献   

2.
钛吸氕、氘和氚的热力学同位素效应   总被引:6,自引:0,他引:6  
在金属氢化物热力学及动力学测试系统上测定了钛吸收氕、氘和氚单质气体的压力-组成等温线(p-c-T曲线),并根据范德荷夫方程得到了钛吸收氕、氘和氚形成不同物相时的热力学参数△H^0和△S^0。实验证明,钛吸收氕、氘和氚单质气体时有显著的热力学同位素效应,在相同温度、相同原子比下,吸气平衡压力从低到高依次是氕、氘和氚,但其反应焓变和熵变从小到大依次是氚、氘和氕。  相似文献   

3.
《核技术》2015,(5)
在惯性约束聚变氘氚冷冻靶制备中,对氘氚原料气中氕含量有严格限制。为控制少量燃料中氕含量,有必要开展相关氢同位素分离研究及工程研制。根据热循环吸附(Thermal Cycling Absorption Process,TCAP)原理及前期冷实验数据,研制了一套小型纯化热实验系统。系统内配置了一根长2 m、外径6.4 mm的钯/硅藻土填充柱用于对氕的过滤。按照纯化工艺设计,占总吸附量10%的原料气从填充柱一端输入,经过一次加热冷却循环后从柱另一端输出,氕在色谱柱内累积,进而实现原料气的纯化。经过纯化工艺初步探索,连续输入33次原料气后,柱内氕含量由12%累积到了52%,产品气中氕含量由12%降至3%,氘氚燃料回收率为82.5%,实现了柱内氕的有效富集,以及氘氚气体中氕的有效过滤。  相似文献   

4.
在聚变堆燃料循环系统中,钯合金膜将被用于氢同位素与杂质气体间的渗透分离以及含氚杂质中氚的催化回收。长期连续的氚操作将使合金膜体内因氚衰变而累积3He,产生氚老化效应。本工作研究了贮氚老化对Pd8.5Y0.19Ru(原子百分数)合金膜的氕、氘渗透性能的影响。研究结果表明:对于膜内体氦浓度He/M为0.042的氚老化膜,在573~723K温度范围内,氕、氘渗透率被严重降低,膜的氕氘渗透分离系数则有所提高。  相似文献   

5.
采用非零初压热解吸法研究了不同钼含量的钛钼合金TiMo_x(x=0.03、0.13、0.25、0.50、1.00,Mo与Ti原子数之比)氘化物的热解吸动力学,测试了氘解吸量与解吸时间的关系,应用反应速率分析方法得到了其热解吸速率常数k_d和热解吸表观活化能E_d;并与氕化物的热解吸动力学行为进行了比较。结果显示,x=0.03时,合金氕化物E_d小于氘合金化物E_d,与钛放氢动力学同位素效应一致;x=0.13、0.25时,氕化物E_d大于氘化物E_d;x=0.50、1.00时,氕化物与氘化物的E_d差别不大。通过初始解吸时合金中氕、氘含量的比较,结合室温下合金吸氕、氘量及物相结构,对合金放氢动力学同位素效应的本质进行了探讨。  相似文献   

6.
恒温等容条件下,通过p-t曲线测量,研究在223~393K范围内载钯硅藻土(Pd/K)吸氕、氘动力学特性。应用反应速率分析方法计算了反应速率常数,得到了Pd/K吸氕、氘反应活化能。动力学计算结果显示:在整个温度范围内,载钯硅藻土与氕、氘反应明显分为两个温度段。低温段(223~313K),载钯硅藻土吸氕、氘反应速率常数随温度升高而增大且吸氕反应速率大于吸氘反应速率,吸氕、氘反应活化能分别为19.5、19.2kJ/mol;高温段(313~393K),载钯硅藻土吸氕、氘反应速率则随温度升高而减小,氕、氘反应活化能分别为:-18.6、-12.1kJ/mol。测试结果表明,载钯硅藻土吸氕、氘反应存在显著的动力学同位素效应且同位素效应依赖于温度的变化。  相似文献   

7.
电阻蒸发制备的锆膜氢化后,利用二次离子质谱(SIMS)对其进行了深度剖析与成像分析,结果表明氕与氘在锆膜深度分布均匀,在过渡层中呈递减分布,并消失于过渡层与衬底的交界处。锆膜在n(H):n(D)=0.82的气氛中氢化时,会因同位素效应而使氕氘化锆膜中氕的含量高于氘的含量。锆膜表面若有铝、铁、钾以及钠等元素的污染时,会造成表面氕与氘分布不均匀,氕与氘的不均匀分布分别与铝及锆的不均匀分布有关。  相似文献   

8.
氢的同位素氕(H)、氘(D)和氚(T)在医疗、核能、国防等领域都有着广泛的应用,特别是在碳达峰、碳中和的“双碳”背景下,采用氘氚核聚变能被认为是我国的重要能源战略。故实现氢同位素的有效分离具有极其重要意义,然而自然界中氘和氚的相对丰度却极低,国内外学者相继开展了广泛的科学研究。本文首先对水中氢同位素分离的技术原理进行了概述;然后,从工程化应用角度,重点综述了电解法、精馏法和化学交换法;从实验室研发角度,重点综述了膜分离法和多孔材料吸附法。最后,对几种典型技术的分离因子和能耗进行了对比分析,并展望了未来水中氢同位素分离技术的发展趋势,以期为水中氢同位素的高效分离提供指导。  相似文献   

9.
电阻蒸发制备的锆膜氢化后,利用二次离子质谱(SIMS)对其进行了深度剖析与成像分析,结果表明氕与氘在锆膜深度分布均匀,在过渡层中呈递减分布,并消失于过渡层与衬底的交界处.锆膜在n(H):n(D)=0.82的气氛中氢化时,会因同位素效应而使氕氘化锆膜中氕的含量高于氘的含量.锆膜表面若有铝、铁、钾以及钠等元素的污染时,会造成表面氕与氘分布不均匀,氕与氘的不均匀分布分别与铝及锆的不均匀分布有关.  相似文献   

10.
采用气相渗透方法,开展了国产低活化铁素体/马氏体钢(RAFM钢?)之一的CLAM钢的氚渗透实验,研究了影响渗透的关键因素,建立了可靠的实验方法。在573~823?K温度范围内,得出氚的渗透率FT为2.57×10-8exp(-38639/RT),氚溶解度ST为2.2×10-1exp(-38639/RT),扩散系数DT?为1.17×10-7exp(-22011/RT)。另外,氘氚混合渗透时存在明显的正同位素效应,在实验温度范围内,推导得出的氘氚渗透分离系数αDT为1.42,氕氚渗透分离系数αHT为3.76。   相似文献   

11.
低活化铁素体/马氏体钢(RAFM钢)是聚变堆产氚包层的优选结构材料。氢同位素在结构材料中的扩散渗透特性关系到产氚回收率、燃料循环及运行安全。本工作对国内研发RAFM钢之一的CLAM钢进行了气体驱动的氘渗透实验,得到573~873 K温度范围内氘的宏观溶解度S(mol/(m3•Pa0.5))为0.264exp(-22 447/RT),扩散系数D(m2/s)为1.38×10-7exp(-17 271/RT),渗透率Φ(mol/(m•s•Pa0.5))为3.64×10-8exp(-39 718/RT)。还进行了氕氘气体混合物的渗透实验,确认了渗透同位素效应;探索了钢中溶解氘的真空热释放去除。  相似文献   

12.
在高真空金属系统中,采用非零初压热解析方法研究了钛钼合金TiMox(x=0.03, 0.13, 0.25, 0.50, 1.00, 原子比)氘化物的热解析动力学,测试了氘解析量c随时间t的变化关系,应用反应速率分析方法得到了热解析速率常数kd和热解析表观活化能Ed ,合金氘化物Ed依次为46.6, 22.4, 13.7, 17.1, 10.4kJ.mol-1。比较氕化物的热解析动力学行为,Mo含量小于0.03时,合金氕化物Ed小于氘合金化物Ed,与钛放氢动力学同位素效应保持一致。Mo含量在0.13 ~ 0.25时,氕化物Ed大于氘化物Ed,Mo含量大于0.50时,氕,氘化物Ed 差别不大。通过初始解析时合金中氕,氘含量的比较,结合室温下合金吸氕,氘量,对合金放氢动力学同位素效应的本质进行了探讨。  相似文献   

13.
本工作研究不同温度下钛吸收氕氘混合气体的特性,并计算其分离因子α。结果表明,在100~300℃温度范围内,ln α与温度T的倒数间存在线性关系ln α=-0.13+107/T。在200 ℃下,当混合气中的氘浓度在10.0%~87.2%范围内变化时,钛吸收氕氘混合气的分离因子恒定不变。钛对氕氘混合气的吸收存在明显的同位素效应,钛更易于吸收氕气。  相似文献   

14.
熔盐堆产生的氚在高温下透过结构材料管壁进入大气环境。为降低此危害,研究氚在堆结构材料中的渗透过程十分必要。针对熔盐堆常用的结构材料Hastelloy N、GH3535、Hastelloy C230、Hastelloy C276,本研究采用压力差驱动法,在400-700 oC和5-40 k Pa的试验条件下,获得了氕、氘的渗透系数,并初步估算氚在该结构材料中的渗透。结果表明:氕、氘在镍基合金中的渗透通量与气体压力的平方根成正比,渗透系数随温度增大,与温度倒数的关系符合阿伦尼乌斯公式;氕、氘在成分相似的GH3535和Hastelloy N中渗透系数接近,与其它两种合金材料中渗透系数都在一个数量级内,在相同温度下两者渗透系数比值接近1.4,符合经典扩散理论;在400-700 oC内,氚在4种镍金合金中渗透过程的指前因子为1.1×10-7-1.6×10-7 mol·m-1·s-1·Pa-1/2,活化能为59-62 k J·mol-1。  相似文献   

15.
【日本《核科学技术》1979年12月报道】烧氘、氚的聚变反应堆,其燃料循环需要从等离子体出口气体中回收未烧掉的氘(D)和氚(T)。回收分为两步:(1)除去氦和其他杂质,(2)分离同位素 D 和T。在同位素分离方法中,低温蒸馏和钯膜级联比较有希望。钯膜级联法利用了普通氢  相似文献   

16.
氢的同位素氕、氘和氚性质极其相近,常采用气相色谱、质谱和光谱进行分析。用质谱分析时,在高能电子的作用下加速H2+D2=2HD的转化,从而影响测量结果的可靠性,且质谱仪对HT和D2的分离较困难.  相似文献   

17.
热导检测技术在线分析氢同位素气体   总被引:3,自引:0,他引:3  
以高纯氕作载气,对热导检测技术(TCD)在线分析氢同位素气体进行了实验研究,考察了进样压力、氘丰度以及样品中HD含量对测量结果的影响.实验结果表明,TCD对氘的响应与氘的压力呈良好的线性关系;对已知氘丰度为1%~90%的氕氘混合物样品进行了测定,测量结果的误差与氕氘混合气体中的HD丰度成正比,绝对误差范围在0.000~0.025.  相似文献   

18.
用氨气-水之间氘交换法与氨精馏法组合成的工艺流程提取核反应堆来的重水中的氕和氚,可以把重水的浓度提高到99.6%以上。这一方法比用氘-水交换法与氘精馏法组合成的工艺流程纯化核反应堆重水安全、易行。  相似文献   

19.
假设排代过程受表面反应控制和气相中H2与D2快速达到反应平衡,建立了流速和温度恒定条件下LaNi5和LaNi4.7Al0.3柱内氕排代氘的一维数学模型。该模型基于分子碰撞理论,考虑了分离因子对氢同位素排代的影响。模型中的气-固相同位素交换几率为可变参数,其余参数使用了文献值或实验值。计算了LaNi5和LaNi4.7Al0.7柱内氕排代氘及LaNi5柱内氘排代氕过程中流出端氢同位素各组分丰度随时间的变化关系并与实验结果进行了对照。结果表明:当同位素交换几率为2.96×107时,根据数学模型获得的排代流出曲线与实验结果具有良好一致性,该模型可恰当描述金属氢化物柱内氢同位素的排代行为。  相似文献   

20.
天然水中氚含量很低,一般采用电解浓缩-液闪计数法进行测量。电解水样时,氚的电解回收率可由水样的浓缩倍数和氚分馏系数来确定。而电解过程的氚分馏系数和氘分馏系数存在一个近似的关系,即lnβ=ηlnα。采用氚标准水进行电解实验,可得到氚分馏系数,采用光腔衰荡激光同位素法测量电解前后的氘含量可以获得氘的分馏系数。电解条件为低碳钢-镍电极装置,以Na2O2为电解质,电解过程温度为0.5℃。实验得到η为1.27。在电解水样时,可根据lnβ=1.27 lnα可得到氚分馏系数,从而获得本批次每个水样的电解回收率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号