首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The growth and progression of prostate cancer depends on the stromal-epithelial interaction which is under paracrine control. Hepatocyte growth factor (HGF), produced by mesenchymal cells, is a multifunctional growth factor stimulating the movement and growth of epithelial cells including cancer cells. We therefore assessed the relationship between the invasive potential of prostate cancer and HGF in vitro. METHODS: Three human prostate cancer cell lines were used including PC-3 and DU145 (androgen-independent), and LNCaP (androgen-dependent). We studied the expression of the HGF receptor c-met proto-oncogene (c-met) by Western blot analysis, and also determined the effects of HGF on cell scattering, and the mechanisms of invasion and proliferation, by microscopic observation, the matrigel invasion chamber assay, and the MTT assay. RESULTS: c-met was detected in PC-3 and DU145 cells, but not in the LNCaP cells. There was increased cell motility in the scatter assay and an increased cell invasive potential in the matrigel invasion chamber assay by stimulation with HGF only with DU145 cells. CONCLUSION: HGF plays an important role in the invasion and metastasis of the DU145 cell line through a paracrine mechanism mediated by the c-metreceptor. In the PC-3 cell line, the lack of downstream signal transduction after the c-met receptor is suggested.  相似文献   

2.
Metastatic prostatic cancer is typically refractory to androgen ablation therapy due to the presence of androgen-independent clones in the neoplasia. A therapeutical approach which could effectively control androgen-dependent and independent cells is, thus, needed. Maybe the failure of certain cancer cells to engage in apoptosis could explain the inherent drug resistance of many tumors. Anyway, these cells can retain the ability to undergo apoptosis in response to an adequate stimulus. We tested whether etoposide, a topoisomerase II inhibitor, could induce apoptosis in androgen-dependent (LNCaP) as well as independent (PC-3 and DU 145) human prostate cancer cell lines. Morphological examination was performed, as it is regarded as one of the most reliable parameters for the detection of apoptotic changes. Complementarily, biochemical and flow cytometric studies were also used. Characteristical changes of apoptosis were demonstrated in PC-3, Du 145, and LNCaP cancer cells after treatment with etoposide. These cells, thus, retain the ability to undergo apoptosis under adequate conditions, in a promising approach to hormone refractory prostate cancer therapy.  相似文献   

3.
Androgen ablation has been an effective treatment in patients with advanced prostate cancer. However, most treated patients develop hormonally resistant disease and do not respond to conventional chemotherapy. Immunotherapy against prostate cancer is an alternative approach in overcoming hormonal/drug-resistant prostate cancer. Cytotoxic immune lymphocytes kill target cells via the perforin/granzyme and the Fas-ligand (Fas-L) pathways. We hypothesize that tumor cells respond poorly to immunotherapy by developing resistance to killing by the Fas-L mechanism. This study investigated whether prostate tumor cells are sensitive to Fas-mediated killing. The human prostate carcinoma cell lines DU145, PC-3, and LnCAP were examined for their sensitivity to killing and apoptosis by the Fas-L agonist anti-Fas antibody and CTLs. All three lines moderately expressed the Fas antigen on the cell surface; however, all three lines were relatively resistant to cytotoxicity mediated by anti-Fas (CH-11) antibody. Pretreatment of DU145 and PC-3 with subtoxic concentrations of drugs followed by anti-Fas antibody resulted in synergistic cytotoxicity and apoptosis, whereas only an additive effect was obtained with LnCAP. Chemosensitization with drugs and anti-Fas was completely blocked by the addition of neutralizing anti-Fas antibody. The murine CTL hybridoma, PMMI, which kills only via the Fas-L pathway, was able to kill chemosensitized PC-3 and DU145 but not LnCAP cells. Furthermore, this cytotoxicity was blocked by anti-Fas neutralizing antibody. Chemosensitization of PC-3 and DU145 prostate tumor cells was not due to up-regulation of Fas-receptor antigen expression. Treatment of tumor cells with cisplatin did not down-regulate the antiapoptotic genes bcl-2, FAP-1, and c-myc. Further, there was no induction by cisplatin of Fas-L on the tumor cells, thus ruling out Fas/Fas-L-mediated autologous killing. These findings demonstrate that pretreatment of drug-resistant/CTL-resistant prostate DU145 and PC-3 tumor cells with subtoxic concentrations of certain chemotherapeutic drugs sensitizes the tumor cells to Fas-mediated cytotoxicity. These findings suggest that chemosensitization of tumor cells should optimize the response to immunotherapeutic interventions in the treatment of hormone-resistant/drug-resistant prostate cancer.  相似文献   

4.
Insulin-like growth factor-binding protein-related protein-1 (IGFBP-rP1; also known as Mac25, TAF, and PSF) is a member of the IGFBP superfamily. It is a cysteine-rich protein that shares structural and functional similarities with the conventional IGFBPs. In situ hybridization of prostate tissue sections show intense IGFBP-rP1 messenger ribonucleic acid (mRNA) expression in normal stroma and glandular epithelium. There was a significant loss of detectable IGFBP-rP1 mRNA in metastatic prostate tissue. IGFBP-rP1 mRNA (Northern blots) and protein (immunoblots) were detectable in primary cultures ofprostatic stromal and epithelial cells as well as in the immortalized nonmalignant prostatic human epithelial cells, P69, and in the P69 metastatic subline, M12. IGFBP-rP1 expression was not detectable in the prostatic cancer cell lines PC-3, DU145, and LNCaP. IGFBP-rP1 expression was regulated in P69 cells but not in M12 cells. Protein and mRNA expression was up-regulated by IGF-I, transforming growth factor-beta, and retinoic acid. The observations that IGFBP-rP1 expression is significantly diminished in prostate tumorigenesis and is regulated in nonmalignant prostate cells suggest IGFBP-rP1 is important in normal prostatic cell growth.  相似文献   

5.
Epidemiological and laboratory data support a role for vitamin D in the growth and differentiation of human prostatic cells. These findings prompted us to ask whether prostatic cells could convert 25-hydroxyvitamin D3 (25-OH-D3), the major circulating metabolite of vitamin D3, to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the hormonally active metabolite, in a manner similar to cultured human keratinocytes. Therefore, we investigated three well-characterized human prostate cancer cell lines, LNCaP, DU 145, and PC-3; two primary cultures of cells derived from noncancerous human prostates (one normal and one benign prostatic hyperplasia); and primary cultures of normal human keratinocytes for their ability to synthesize 1,25(OH)2D3. Assays were performed in the presence of 25-OH-D3 as the enzyme substrate and 1,2-dianilinoethane, an antioxidant and free radical scavenger, and in the presence and absence of clotrimazole, a cytochrome P450 inhibitor. DU 145 and PC-3 cells produced 0.31 +/- 0.06 and 0.07 +/- 0.01 pmol of 1,25(OH)2D3/mg protein/h, respectively. No measurable 1,25(OH)2D3 was detected in LNCaP cells. The normal and benign prostatic hyperplasia primary cultures and keratinocyte cultures produced 3.08 +/- 1.56, 1.05 +/- 0.31, and 2.1 +/- 0.1 pmol of 1,25(OH)2D3/mg protein/h, respectively, using a calf thymus receptor binding assay to measure 1,25(OH)2D3 in the presence of 1,2-dianilinoethane. The identity of the analyte as 1,25(OH)2D3 was supported by high performance liquid chromatography using [3H]25-OH-D3 as the enzyme substrate and a solvent system that is specific for 1,25(OH)2D3. The production of 1,25(OH)2D3 in the prostate cancer cell lines and in the primary cultures was completely inhibited in the presence of clotrimazole. This report demonstrates that two of three human prostate cancer cell lines, as well as primary cultures of noncancerous prostatic cells, possess 1alpha-hydroxylase activity and can synthesize 1,25(OH)2D3 from 25-OH-D3. Together with recent data indicating that 1,25(OH)2D3 inhibits the invasiveness of human prostate cancer cells (G. G. Schwartz et al., Cancer Epidemiol. Biomark. Prev., 6: 727-732, 1997), these data suggest a potential role for 25-OH-D3 in the chemoprevention of invasive prostate cancer.  相似文献   

6.
Our previous studies demonstrated that the promyelocytic leukemia gene, PML, encodes a growth and transformation suppressor. Overexpression of PML inhibits cancer cell growth in vitro and in vivo. In this study, we further explored the possibility of applying PML as a potential agent for developing prostate cancer gene therapy using an adenovirus delivery system. We have constructed and produced the recombinant PML-adenovirus, Ad-PML, in which the full-length PML cDNA is driven by the strong cytomegalovirus promoter. In LNCaP, DU145, and PC-3 prostate cancer cell lines, an infection efficiency of 90% can be achieved at a concentration of 2, 10, and 100 multiplicity of infection (MOI), respectively. Western blotting and immunofluorescence staining demonstrated that the AD-PML-infected cells expressed a high level of PML protein. The protein expression peaked at days 3-4 postinfection, and a detectable level of PML was found at day 18 after viral infection. To test the effect of Ad-PML on the growth of prostate cancer cells, the DU145 and LNCaP cells were infected with 10 and 2 MOI of Ad-PML. We found that the growth rate of the Ad-PML-infected DU145 and LNCaP cells were significantly inhibited. A tumorigenicity test in nude mice showed that the Ad-PML-treated DU145 cells failed to form tumors. Most importantly, direct injection of Ad-PML into DU145-induced tumors was able to repress tumor growth in nude mice by 64%. Taken together, these data indicate that PML is a tumor growth suppressor in prostate cancer and that Ad-PML may be a potential candidate for human prostate cancer therapy.  相似文献   

7.
Others have reported that the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA), an activator and down-regulator of most protein kinase C (PKC) isozymes, can induce apoptotic cell death of androgen-sensitive LNCaP but not androgen-insensitive PC-3 or DU 145 human prostate cancer cells. As a first step toward uncovering the mechanism by which TPA induces apoptosis of LNCaP cells, we quantified expression of PKC isozyme mRNAs in unmodified and TPA-resistant LNCaP cells and in naturally TPA-resistant PC-3, PC-3M, and DU 145 cells. All of the cell lines and normal prostate expressed RNAs for PKC alpha, delta, epsilon, eta, and mu; only DU 145 cells and normal prostate expressed PKC beta and theta RNAs, and none expressed PKC gamma. The amount of PKC alpha RNA and protein was 6- to 38-fold lower, and PKC mu RNA was 4.5- to 16.5-fold higher in unmodified and TPA-resistant LNCaP cells than in the androgen-independent cells. We examined the effects of TPA on PKC alpha and mu mRNA levels and on membrane translocation of PKC alpha. Incubation with TPA for 6 h or more induced 95% inhibition of cell growth, a transient 12-fold increase and 5-fold decrease in PKC alpha and mu mRNA levels, respectively, and prolonged translocation of PKC alpha to non-nuclear membranes in unmodified LNCaP cells and in TPA-resistant LNCaP cells from which TPA had been removed for 10 days. TPA-resistant LNCaP cells in the continuous presence of TPA, or 24 h after removal of TPA, had down-regulated PKC alpha and remained resistant to re-addition of TPA. These data demonstrate a strong correlation of the presence and absence of membrane PKC alpha with apoptosis and resistance to apoptosis, respectively.  相似文献   

8.
These studies were undertaken to assess the relative expression and autocrine activation of the epidermal growth factor receptor (EGFR) in normal and transformed prostatic epithelial cells and to determine whether EGFR activation plays a functional role in androgen-stimulated growth of prostate cancer cells in vitro. EGFR expression was determined by Western blot analysis and ELISA immunoassays. Immunoprecipitation of radiophosphorylated EGFR and evaluation of tyrosine phosphorylation was used to assess EGFR activation. The human androgen-independent prostate cancer cell lines PC3 and DU145 exhibited higher levels of EGFR expression and autocrine phosphorylation than normal human prostatic epithelial cells or the human androgen-responsive prostate cancer cell line LNCaP. PC3 and DU145 cells also showed higher levels of autonomous growth under serum-free defined conditions. Normal prostatic epithelial cells expressed EGFR but did not exhibit detectable levels of EGFR phosphorylation when cultured in the absence of exogenous EGF. Addition of EGF stimulated EGFR phosphorylation and induced proliferation of normal cells. LNCaP cells exhibited autocrine phosphorylation of EGFR but did not undergo significant proliferation when cultured in the absence of exogenous growth factors. A biphasic growth curve was observed when LNCaP cells were cultured with dihydrotestosterone (DHT). Maximum proliferation occurred at 1 nM DHT with regression of the growth response at DHT concentrations greater than 1 nM. However, neither EGFR expression nor phosphorylation was altered in LNCaP cells after androgen stimulation. In addition, DHT-stimulated growth of LNCaP cells was not inhibited by anti-EGFR. These studies show that autocrine activation of EGFR is a common feature of prostatic carcinoma cells in contrast to normal epithelial cells. However, EGFR activation does not appear to play a functional role in androgen-stimulated growth of LNCaP cells in vitro.  相似文献   

9.
10.
A novel monoclonal antibody has been developed that reacts strongly with human prostatic cancer, especially tumors of high grade. This antibody (7E11C-5) is currently in Phase 3 trials as an imaging agent for metastatic disease. We have cloned the gene that encodes the antigen that is recognized by the 7E11C-5 monoclonal antibody and have designated this unique protein prostate-specific membrane (PSM) antigen. PSM antigen is a putative class II transmembranous glycoprotein exhibiting a molecular size of Mr 94,000. Functionally, class II membrane proteins serve as transport or binding proteins or have hydrolytic activity. Preliminary studies have demonstrated binding of pteroylmonoglutamate (folate) to membrane fractions that also cross-reacted with the PSM monoclonal antibody. We observed substantial carboxypeptidase activity as folate hydrolase associated with PSM antigen. The purpose of our study was to demonstrate that human prostatic carcinoma cells expressing PSM antigen exhibit folate hydrolase activity using methotrexate triglutamate (MTXGlu3) and pteroylpentaglutamate (PteGlu5) as substrates. Isolated membrane fractions from four human prostate cancer cell lines (LNCaP, PC-3, TSU-Prl, and Duke-145) were examined for folate hydrolase activity using capillary electrophoresis. After timed incubations at various pH ranges and in the presence and absence of thiol reagents, separation of pteroyl(glutamate)n derivatives was achieved with an electrolyte of sodium borate and SDS, while absorbance was monitored at 300 nm. The results demonstrate clearly that LNCaP cells, which highly express PSM, hydrolyze gamma-glutamyl linkages of MTXGlu3. The membrane-bound enzyme is an exopeptidase, because it progressively liberates glutamates from MTXGlu3 and PteGlu5 with accumulation of MTX and PteGlu1, respectively. The semipurified enzyme has a broad activity from pH 2.5 to 9.5 and exhibits activity maxima at pH 5 and 8. Enzymatic activity is maintained in the presence of reduced glutathione, homocysteine, and p-hydroxymercuribenzoate (0.05-0.5 mm) but was inhibited weakly by DTT (>/=0.2 mm). By contrast to LNCaP cell membranes, membranes isolated from other human prostate adenocarcinoma cells (PC-3, Duke-145, and TSU-Pr1) did not exhibit comparable hydrolase activity, nor did they react with 7E11-C5 monoclonal antibody. After transfection of PC-3 cells with a full-length 2.65-kb PSM cDNA subcloned into a pREP7 eukaryotic expression vector, non-PSM antigen-expressing PC-3 cells developed immunoreactivity to 7E11-C5 monoclonal antibody and demonstrated folate hydrolase activities and optimum pH activity profiles identical to those of LNCaP cells. The membrane-bound enzymes from both LNCaP- and PC-3-transfected cells also have a capacity to hydrolyze an alpha-linked glutamyl moiety from N-acetyl-alpha-aspartylglutamate. We have identified that PSM antigen is a pteroyl poly-gamma-glutamyl carboxypeptidase (folate hydrolase) and is expressed strongly in human prostate cancer. Cancer cells that express this enzyme are resistant to methotrexate therapy. Those developing future therapeutic strategies in the treatment of prostate cancer that utilize folate antagonists need to consider this mechanism of resistance.  相似文献   

11.
12.
OBJECTIVE: To assess a range of phyto-oestrogens as moderators of growth and metabolism in several prostate cell lines. MATERIALS AND METHODS: Four prostate cell lines (PNT-1/A, PNT-2, PC-3 and DU145) were challenged with different doses of five phyto-oestrogens (biochanin A, daidzein, genistein, genistin and nordihydroguaiaretic acid) over 3 days in culture. Cell proliferation was assessed by incorporation of 5-bromo-2'-deoxyuridine (BrdU) and metabolic activity by cleavage of a tetrazolium salt (XTT). RESULTS: Growth and metabolism were inhibited with all compounds and cell lines (e.g. the dose for 50% inhibition of proliferation of PC-3 cells by genistein was 38 micromol/L); differences in the patterns of results suggested that different mechanisms operated, but there was no evidence for any synergistic activity on the inhibition of cell proliferation. CONCLUSION: These results offer further support for the hypothesized role of phyto-oestrogens as dietary protectors against prostatic cancer.  相似文献   

13.
PURPOSE: Jasplakinolide is a novel natural product anticancer agent which acts by inducing overpolymerization of actin. The aim of the current study was to explore the activity of jasplakinolide with hyperthermia and radiation. METHODS: The response of human PC-3 and DU-145 prostate carcinoma cells and DU-145 xenografts and the response of the Lewis lung carcinoma to jasplakinolide were studied. RESULTS: Jasplakinolide was cytotoxic toward human prostate carcinoma cells, DU-145, PC-3 and LNCaP in culture, killing 1 log of cells with 0.8, 0.3 and 0.07 microM of drug in 24 h, respectively. The combination of jasplakinolide and hyperthermia resulted in primarily additive cell killing by the two modalities in the three prostate carcinoma lines. In combination with radiation, jasplakinolide produced some diminution in the shoulder of the survival curve of normally oxygenated PC-3 cells and was a radiation sensitizer of hypoxic DU-145 cells and hypoxic PC-3 cells. In vivo, jasplakinolide was an active antitumor agent against the Lewis lung carcinoma and the DU-145 prostate carcinoma xenograft. Jasplakinolide was a radiation sensitizer in the Lewis lung carcinoma. Jasplakinolide was also effective against the systemic Lewis lung carcinoma, decreasing lung metastases. Lung metastases were further decreased when jasplakinolide was administered along with radiation to the subcutaneous primary tumor. In the DU-145 tumor, the effects of jasplakinolide and fractionated radiation for 1 or 2 weeks appeared to be primarily additive. CONCLUSION: Jasplakinolide is an interesting new anticancer agent for which further study both as an anticancer agent and in combined modality regimens is warranted.  相似文献   

14.
15.
It is now well established that in response to genotoxic stresses mammalian cells show an increased p53 protein levels and undergo cell cycle arrest at G1/S and G2/M checkpoints. But, the consequences of these cell cycle arrests on cell survival are not yet elucidated. In this study, we have analysed the relationships between p53 protein induction, cell cycle arrest and cell survival following exposure of normal human fibroblasts (NHFs) to various genotoxic agents such as cisplatin, UV radiation and gamma radiation. p53 protein accumulation and G2/M arrest arose at the same time following exposure to DNA damaging agents, suggesting that p53 is responsible for the G2/M block. However, following inhibition of p53 induction by an antisense oligonucleotide, this G2/M arrest is even more important and correlates with an enhanced sensitivity of NHFs to UV radiation. In addition, there appears to be a threshold in the response of NHFs to DNA damaging agents, p53 induction and cell cycle arrest being observed only with lethal UV doses. We show that: 1) there appears to be a threshold in the cellular response to genotoxic agents, below which neither p53 induction, nor cell cycle arrest, nor cell survival alteration occur and beyond which p53 induction is accompanied by cell cycle arrest and decreased cell survival; 2) although there is a tight temporal relationship, the onset of which depends of the DNA damaging agent used, between the start of p53 induction and the occurrence of G2/M arrest, this latter is independent of p53; 3) p53 inhibition enhances NHFs' sensitivity to DNA damaging agents, the extent of the G2/M arrest correlating with decreased cell survival. Finally, the lack of obligatory correlation between p53 inactivation, apoptosis and radio- or chemoresistance is discussed.  相似文献   

16.
Low levels of dietary selenium are associated with increased risk of malignancy of several organs, including the prostate. Using a subtractive approach called linker capture subtraction, we have found that the human selenium-binding protein gene hSP56 is differentially expressed by the relatively slow-growing, androgen-sensitive prostate cancer cell line LNCaP but not by the more rapidly growing androgen-insensitive lines PC-3 and DU145. We confirmed this differential expression by Northern blot analysis. Importantly, hSP56 expression by LNCaP cells was reversibly down-regulated by exogenous androgen in a concentration-dependent manner. Marked differences in steady-state hSP56 mRNA levels were found in a variety of normal and neoplastic human cells that were examined. hSP56 expression was especially high in normal tissues that appear to benefit from the cancer-protective action of dietary selenium and was low in many neoplastic cells. The results suggest that hSP56 may play a role in determining the neoplastic phenotype.  相似文献   

17.
18.
Prostate-specific antigen (PSA) is a widely used marker for the diagnosis and management of prostate cancer. Minimal enhancer/promoter constructs derived from the 5' flank of the human PSA gene (prostate-specific enhancer) were inserted into adenovirus type 5 DNA so as to drive the E1A gene, thereby creating a prostate-specific enhancer-containing virus, CN706. E1A was expressed at high levels in CN706-infected human PSA-producing LNCaP cells but not in CN706-infected DU145 cells, which are human prostate cells that do not express PSA. The titer of CN706 was significantly higher in LNCaP cells compared to several human cell lines that do not produce PSA (HBL100, PANC-1, MCF-7, DU145, and OVCAR3). Furthermore, in LNCaP cells, the yield of CN706 was dependent on exogenous androgen (R1881). CN706 destroyed large LNCaP tumors (1 x 10(9) cells) and abolished PSA production in nu/nu mouse xenograft models with a single intratumoral injection.  相似文献   

19.
20.
Bombesin is a potent inducer of signal trasduction pathways involved in the proliferation and invasion of androgen-insensitive prostatic tumor cells. This study examines the bombesin-mediated modulation of pericellular proteolysis, monitoring cell capability to migrate and invade basement membranes, using a chemo-invasion assay and analyzing protease production. The results suggest that bombesin could modulate the invasive potential of prostatic cell lines regulating secretion and cell-surface uptake of uPA and MMP-9 activation. In fact, in PC3 and DU145 cells but not in LNCaP cells, urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) are induced by bombesin treatment. Bombesin also stimulates cell proliferation and this effect can be inhibited blocking uPA by antibodies and/or uPA inhibitor p-aminobenzamidine. Moreover, HMW-uPA induces cell proliferation in LNCaP cells, which do not produce uPA in the basal conditions, while PC3 and DU145 cell growth is supported by autocrine production of uPA. The increment of uPA activity on the external plasma membrane causes an increased pericellular plasmin activation. This effect is inhibited by antibodies against uPA and by p-aminobenzamidine. Similarly to EGF, bombesin stimulates secretion and activation of MMP-9 and TIMP-1 production. MMP-9 activation can be also obtained by HMW-uPA treatment, suggesting that plasma-membrane-bound uPA can start a proteolytic cascade involving MMP-9. Therefore, in in vitro assays, bombesin is able to modulate pericellular proteolysis and cell proliferation, differently distributing and activating proteolytic activities. This effect can be related to the "non-random" degradation of the extracellular matrix in which membrane uPA-uPAreceptor complexes could start bombesin-induced directional protein degradation during metastatic spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号