首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究大气压氩气等离子体羽的脉冲放电特性及其放电机理,以氩气为工作气体,在大气压空气环境中,利用直流激励的等离子体喷枪产生了圆锥形均匀的等离子体羽。等离子体羽长度随气流的增大而增大,但几乎不随两电极间维持电压的变化而变化。通过对两电极间维持电压、放电电流、放电发光信号的时间演化图分析,发现尽管维持电压是恒定的,放电电流和放电发光表现为周期性的脉冲。放电脉冲频率随维持电压的增大而增大,且随两电极间距离的增大而减小。对不同位置的发光信号时间演化进行研究,表明这种脉冲等离子体羽与常见的持续模式和子弹模式不同,其放电在不同的空间位置几乎是同时产生的,但是放电的熄灭却沿远离喷嘴的方向依次推迟。  相似文献   

2.
脉冲放电等离子体被广泛用于气态污染物处理的研究,放电参数直接影响反应器内等离子体状态,进而影响污染物的去除效果,研究不同条件下的放电特性可为脉冲等离子体技术的应用提供参考.本文利用线板式脉冲等离子体反应器, BPFN型高压脉冲电源供电, 研究了电源电容、极板间距及介质阻挡对放电特性的影响.结果表明:增大电源电容可以有效地提高电源能量效率;增大极板间距,峰值电压VP增大,峰值电流IP减小,脉宽减小,波形更加理想;陶瓷板阻挡放电可解决间隙火花放电,使脉冲电晕放电空间分布均匀,在大范围内提高电源能量效率.  相似文献   

3.
表面介质阻挡放电(DBD)在气体流动控制方面有着巨大的应用前景。利用自制的纳秒和微秒脉冲电源进行表面DBD实验,比较了电压幅值、介质厚度、电极水平间距等对两种激励下表面DBD电特性的影响并进行了分析。实验中两种电源激励的表面介质阻挡放电能量均在mJ量级,上升沿瞬时最大功率达到几十kW。实验结果表明:在脉冲上升沿有多次放电,微秒脉冲上升沿放电次数比纳秒脉冲多;随着电压幅值上升,放电次数减少;介质越薄,放电越激烈,能量越大;电极水平间距对表面DBD放电有影响,间距0 mm时能量消耗最大;施加脉冲电压频率越大,放电等离子体的亮度越大;微秒脉冲放电的等离子体区域要大于纳秒脉冲放电。  相似文献   

4.
快脉冲放电等离子体用于难降解污水处理   总被引:5,自引:3,他引:2  
为了探讨高浓度有机物降解用常规方法难以处理的问题,提出了利用快脉冲放电等离子体技术处理难降解污水的方法。该法具有高级氧化处理的"协同"效应,工艺简单,处理效果明显等多方面综合优势。在介绍了快脉冲放电等离子体方法的基本原理后综述了国内外研究现状,指出了快脉冲放电等离子体污水处理需要解决的关键技术问题以及今后的研究方向,对这种新技术在环保领域的应用前景进行了分析和展望。  相似文献   

5.
为在大气压下产生高强度的介质阻挡放电(dielectric barrier discharge,DBD)等离子体,该文利用永磁铁产生平行于电场方向的磁场,用于增强纳秒脉冲针–板DBD等离子体的物理化学活性,并探究不同脉冲参数下磁场对等离子体特性的影响规律和机制。考察平行磁场辅助脉冲针–板DBD等离子体的动态演化特性,并从电学、光学和臭氧生成特性等方面研究了脉冲电压幅值、上升沿时间和下降沿时间等参数对平行磁场辅助脉冲针–板DBD特性的影响规律。实验结果表明:平行磁场通过磁化电子改变DBD等离子体特性;施加平行磁场后,针–板DBD中空间流光放电及介质表面流光放电强度增强;不同脉冲放电参数下,施加平行磁场对放电强度及臭氧产量均显示出增强效果,在短脉冲上升沿时间条件下平行磁场的增强效果尤为显著。  相似文献   

6.
高级氧化技术的联用可以提高水体中有机物的矿化效率,为此,基于脉冲放电过程中产生的紫外光效应,研究将玻璃珠负载的TiO2膜催化剂放置于一多针-板电极形式的脉冲放电等离子体体系中,建立脉冲放电等离子体-流光光催化协同体系,分析其协同作用机理。研究考察了不同载气、溶液初始pH值和添加不同浓度自由基捕收剂(碳酸钠)等实验条件下,单独脉冲放电等离子体体系和脉冲放电等离子体-流光光催化协同体系中苯酚氧化的准一级动力学常数。结果表明,在各实验条件下,脉冲放电流光均能诱导TiO2的光催化活性;氧气(O2)作为载气和酸性溶液条件有利于提高协同体系中苯酚的降解速率;在单独脉冲放电体系和脉冲放电等离子体-流光光催化协同体系中,对有机物降解起主要作用的是羟基自由基(.OH)。  相似文献   

7.
为提高放电功率、产生大面积等离子体,设计了一种高重复频率纳秒脉冲电源,其基本原理是采用高压截断法产生高压脉冲.选用通断速度较快的碳化硅(SiC)金属氧化物半导体场效应晶体管(MOSFET)产生纳秒级截断,进而可以大幅提高输出脉冲的重复频率;使用8个串联的MOSFET同步工作,以提高输出电压幅值.测试结果表明,该电源输出脉冲的电压幅值可达10 kV,脉冲上升沿约为12 ns,半高宽约为750 ns.负载为5 kΩ无感电阻时,连续运行重复频率可达100 kHz,爆发模式下重复频率可达1 MHz.电源带载能力较强,未击穿时输出电压脉冲波形基本不随电极负载发生改变.该电源可长期稳定工作,产生较大面积等离子体,满足了高重复频率纳秒脉冲放电的需求.  相似文献   

8.
本文研究和设计了静电聚焦型的径向放电真空电弧等离子体阴极脉冲电子束源。在分析轴向放电的真空电弧等离子体阴极稳定性的基础上,改进结构,设计了径向放电的真空电弧等离子体阴极,由于表面比较狭窄,产生真空电弧后,阴极斑点的高速移动也都位于直径小于2mm的环形阴极内表面上,从而使得电子发射效率较为稳定。并以此为发射阴极,设计径向放电结构的空心阳极等离子体阴极电子束源,该电子束源为无磁场引导的皮尔斯型电子束源,其主要由等离子体阴极和静电聚焦系统两部分组成。实验测量过程中,采用法拉第筒测量了电子束的相关参数,得到比较稳定的脉冲电子束。  相似文献   

9.
采用脉冲放电与电弧等离子体相结合的方法制备Al超微颗粒,与传统的电弧等离子体加热制备方法相比较,该法所制备出的Al超微颗粒平均粒径较小,粒径分布较窄,这是一项十分有前途的新技术。  相似文献   

10.
碳量子点具有优良的光学特性,在环境及能源领域中有重要的应用。为此采用脉冲液相放电技术在柠檬酸和尿素或三聚氰胺的混合水溶液中产生等离子体,引发原料化学反应合成碳量子点。通过放电电压和放电时间等参数的优化,获得了制备荧光碳量子点的最佳条件,并对碳量子点进行形貌、结构和荧光特性的表征。结果表明,脉冲放电峰值电压25 kV、电极间距5 mm、放电时间10 min为合成荧光碳量子点的最佳反应条件,并且液相放电法合成的碳量子点的发光特性可通过放电参数和物料配比等进行调节。该研究结果表明液相放电等离子体法是一种快速合成碳量子点的有效方法——一方面,为碳量子点的快速合成提供参考;另一方面,对液相脉冲等离子体技术的应用范围进一步拓宽。  相似文献   

11.
空气中纳秒脉冲均匀介质阻挡放电研究   总被引:3,自引:0,他引:3  
邵涛  章程  于洋  方志  徐蓉  严萍 《高电压技术》2012,38(5):1045-1050
大气压空气中均匀介质阻挡放电具有广泛的应用前景,实现均匀放电是介质阻挡放电应用关键之一,因而利用上升沿40ns,脉宽70ns的重复频率纳秒脉冲电源激励在大气压空气中产生介质阻挡放电,介绍了纳秒脉冲均匀介质阻挡放电的电特性和放电图像及放电发射光谱,获得了2ns曝光时间的高速摄影放电图像。发现空气中1mm气隙距离下可以实现均匀放电,气隙距离增加至4mm时放电转变为明显的丝状放电,通过观察发射光谱显示等离子体谱线主要是来自400nm以下的氮分子第二正系。结果证实了大气压空气中利用ns脉冲激励可以产生稳定介质阻挡放电,且能实现均匀放电,是典型非平衡态低温等离子体。  相似文献   

12.
为了研究大气压刷形等离子体羽的放电特性,利用针-针直流放电系统,通过氩气的流动,在大气压空气中获得了稳定的较大体积的刷形等离子体羽,发现等离子体羽长度随电源输出功率的增大而增大。通过研究不同电源输出功率下放电电压、放电电流和发光信号相对光强的时间演化,发现了放电存在自脉冲现象,且自脉冲频率随电源输出功率增大而减小,随气体体积流量增大而增大。通过对等离子体羽发光信号进行空间分辨测量,研究了自脉冲形成机制,发现电压达到击穿电压后放电首先在电极间产生,随后电极间的等离子体沿着气流移动,且随移动距离增加而衰减,因此刷形等离子体羽即为吹出喷嘴后衰减中的等离子体。采用光谱学方法,对分子转动温度、振动温度和谱线相对光强比(I391.4/I337.1)进行了空间分辨测量,发现这些参数均沿气流方向降低。  相似文献   

13.
在连续式等离子体电源的基础上,研制出微秒脉冲等离子体电源,增加了脉冲宽度、脉冲相位和脉冲频率等调制方式,丰富了等离子体实现流动控制的手段。给出了微秒脉冲电源的总体设计方案,对电源硬件电路及控制软件做了介绍,并提出了电源运行的具体指标。通过一系列静止大气下的流动控制实验,对比采用脉冲调制和连续放电时流场诱导效果的差异,证明脉冲等离子体电源比连续式等离子体电源性能有较大提升,且具有低耗能,工作稳定可靠等特点,应用前景广阔。  相似文献   

14.
为了研究纳秒脉冲表面滑闪放电特性,本文采用一种新型三电极结构的激励器,通过纳秒脉冲叠加负直流的混合激励模式产生表面滑闪放电。实验研究了电压脉冲分量、电压直流分量及两者的差值对纳秒脉冲表面滑闪放电特性的影响。实验结果表明,当脉冲电压幅值固定时,直流电压幅值的改变对脉冲侧电流的影响较小,但对直流源侧电流却影响显著,直流源侧电流随直流电压幅值的增加而增加,发生表面滑闪放电后峰值和速度均增加。直流电压幅值越大,直流源侧电流出现时刻越早。当直流电压幅值固定时,脉冲侧电流和直流源侧电流均随着脉冲电压幅值的增加而增加。实验中存在一个电压阈值(脉冲分量和直流分量电压差值)使纳秒脉冲表面滑闪放电发生,该阈值为22k V。此时发生表面滑闪放电,瞬时功率峰值、单脉冲能量峰值和稳态能量均迅速增加。脉冲直流电压差值相同时,脉冲分量主导脉冲侧电流的大小,直流分量主导直流源侧电流的大小,脉冲分量所占比例的大小对功率和能量损耗的影响较大。此外,利用数码相机拍摄放电图像研究了纳秒脉冲表面滑闪放电的光学特性,放电图像表明,在电极间施加合理的脉冲电压和负直流电压均可产生表面滑闪放电,实现等离子体的拉伸效果,在阻挡介质表面获得大面积的等离子体。  相似文献   

15.
作为高压高重复频率脉冲电压发生器的开关器件,磁开关的耐压、通流能力以及寿命远高于半导体开关,因而适用作为介质阻挡放电(DBD)激励电源的开关。为研究双极性高频下DBD等离子体放电特性,提出高频双极性磁脉冲压缩系统。首先,阐释通过全桥逆变电路、脉冲变压器和磁开关产生双极性脉冲的原理,并叙述该系统关键器件的设计;其次,利用PSpice仿真软件研究电路关键参数对输出波形的影响规律,测试电阻性负载电压波形,并与仿真结果进行对比分析。测试结果表明,通过双极性磁脉冲压缩系统,能够在负载两端输出的纳秒脉冲电压具有以下参数:幅值在5~13k V可调,上升沿100ns左右,重复频率可高至几千Hz。最后,针对高频双极性下的放电现象进行研究,结合DBD放电模型和放电图片探索高频双极性脉冲电压下放电特性与频率的关系,充实了高频放电理论研究。  相似文献   

16.
为了探讨催化剂与脉冲放电等离子体共同作用来处理恶臭气体的效果,采用V2O5/γ-Al2O3催化剂与脉冲放电等离子体共同作用来处理了恶臭气体甲硫醚,并探讨了反应中催化剂与脉冲放电等离子体的协同性及工艺参数对降解反应的影响。实验结果表明:电晕放电具有改变催化剂气-固相吸附平衡、减少吸附容量的作用,处理恶臭气体时可通过添加催化剂吸附-气体浓缩环节来提高降解反应的能量利用率;催化剂与脉冲放电等离子体共同作用比单一脉冲放电等离子具有更高的甲硫醚去除率,同时催化剂的填充通过改变介电性及电场强度使反应获得更大的能量,催化剂颗粒表面发生的强烈放电促进了降解反应的进行;在一定电压范围内,通过提高峰值电压、增加气体停留时间可有效提高甲硫醚去除率;当峰值电压为22 k V、甲硫醚体积分数为315×10-6、体积流量为550 m L/min时,甲硫醚去除率可达84.12%。催化剂协同脉冲放电等离子体能够有效处理恶臭气体甲硫醚。  相似文献   

17.
脉冲等离子体中离子束能谱的测量   总被引:1,自引:0,他引:1  
利用一种特殊的质谱仪—汤姆生离子能谱仪测量了脉冲放电等离子体中离子束的能谱,并确定了离子的种类。  相似文献   

18.
姜慧  邵涛  车学科  章程  李文峰  严萍 《高电压技术》2012,38(7):1704-1710
在大气环境条件下,以环氧为介质阻挡材料,基于单极性ns脉冲电源进行了表面介质阻挡放电实验,研究了电压幅值、电极宽度、电极间距和重复频率对放电等离子体的影响。结果表明ns脉冲表面介质阻挡放电是丝状放电,放电发生在电压脉冲的上升沿阶段;放电电流主要包括两部分脉冲,与放电丝分布的均匀性有着一定的内在关系,外加电压对放电的均匀性以及产生等离子体的长度起作用;电极宽度和间距对放电电流和产生等离子体的发光强度影响不大,电极宽度和间距越小,放电丝分布越均匀,电极宽度存在一个最优值,使得激励器的放电稳定且产生等离子体相对均匀;脉冲重复频率仅对等离子体强度起作用,对放电特性的影响较复杂,不同电极参数下这些影响与放电丝的分布状态有关。  相似文献   

19.
等离子体温度是电弧放电过程中的重要参数,控制等离子体温度能够有效的控制等离子体化学反应过程。为此,在研制电感储能和电容储能2种脉冲电源的基础上,测定了在不同放电频率、电容电压和储能电容条件下的脉冲电弧放电等离子体发射光谱,并计算了对应条件下的温度。结果显示:电弧放电等离子体温度可以通过改变电感储能电源中的放电频率和电容储能电路中的电压和电容值控制,其线性关系良好,相关系数分别为0.946、0.974和0.979。  相似文献   

20.
为了提高放电等离子体降解VOCs的处理量,降低反应装置在放电过程中的温度,实验利用调制脉冲电源驱动多层平板式介质阻挡放电装置产生低温等离子体,考察了放电过程中的温度变化以及O_3产量,并进行了异戊烷降解的实验研究。结果表明:调制脉冲放电可以分为放电阶段和放电间歇两个阶段,放电能量主要集中在放电阶段;减小占空比有利于减少欧姆热效应,降低反应器的温度,提高O_3产生的能量效率;调制脉冲放电可以有效地利用放电阶段产生的自由基以及活性物质,在占空比20%时,能量效率可以达到9.8 g/(kWh)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号