首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A robust information clustering algorithm   总被引:1,自引:0,他引:1  
Song Q 《Neural computation》2005,17(12):2672-2698
We focus on the scenario of robust information clustering (RIC) based on the minimax optimization of mutual information (MI). The minimization of MI leads to the standard mass-constrained deterministic annealing clustering, which is an empirical risk-minimization algorithm. The maximization of MI works out an upper bound of the empirical risk via the identification of outliers (noisy data points). Furthermore, we estimate the real risk VC-bound and determine an optimal cluster number of the RIC based on the structural risk-minimization principle. One of the main advantages of the minimax optimization of MI is that it is a nonparametric approach, which identifies the outliers through the robust density estimate and forms a simple data clustering algorithm based on the square error of the Euclidean distance.  相似文献   

2.
Identifying the optimal cluster number and generating reliable clustering results are necessary but challenging tasks in cluster analysis. The effectiveness of clustering analysis relies not only on the assumption of cluster number but also on the clustering algorithm employed. This paper proposes a new clustering analysis method that identifies the desired cluster number and produces, at the same time, reliable clustering solutions. It first obtains many clustering results from a specific algorithm, such as Fuzzy C-Means (FCM), and then integrates these different results as a judgement matrix. An iterative graph-partitioning process is implemented to identify the desired cluster number and the final result. The proposed method is a robust approach as it is demonstrated its effectiveness in clustering 2D data sets and multi-dimensional real-world data sets of different shapes. The method is compared with cluster validity analysis and other methods such as spectral clustering and cluster ensemble methods. The method is also shown efficient in mesh segmentation applications. The proposed method is also adaptive because it not only works with the FCM algorithm but also other clustering methods like the k-means algorithm.  相似文献   

3.
Web query logs provide a rich wealth of information, but also present serious privacy risks. We preserve privacy in publishing vocabularies extracted from a web query log by introducing vocabulary k-anonymity, which prevents the privacy attack of re-identification that reveals the real identities of vocabularies. A vocabulary is a bag of query-terms extracted from queries issued by a user at a specified granularity. Such bag-valued data are extremely sparse, which makes it hard to retain enough utility in enforcing k-anonymity. To the best of our knowledge, the prior works do not solve such a problem, among which some achieve a different privacy principle, for example, differential privacy, some deal with a different type of data, for example, set-valued data or relational data, and some consider a different publication scenario, for example, publishing frequent keywords. To retain enough data utility, a semantic similarity-based clustering approach is proposed, which measures the semantic similarity between a pair of terms by the minimum path distance over a semantic network of terms such as WordNet, computes the semantic similarity between two vocabularies by a weighted bipartite matching, and publishes the typical vocabulary for each cluster of semantically similar vocabularies. Extensive experiments on the AOL query log show that our approach can retain enough data utility in terms of loss metrics and in frequent pattern mining.  相似文献   

4.
Similarity-based clustering is a simple but powerful technique which usually results in a clustering graph for a partitioning of threshold values in the unit interval. The guiding principle of similarity-based clustering is "similar objects are grouped in the same cluster." To judge whether two objects are similar, a similarity measure must be given in advance. The similarity measure presented in the paper is determined in terms of the weighted distance between the features of the objects. Thus, the clustering graph and its performance (which is described by several evaluation indices defined in the paper) will depend on the feature weights. The paper shows that, by using gradient descent technique to learn the feature weights, the clustering performance can be significantly improved. It is also shown that our method helps to reduce the uncertainty (fuzziness and nonspecificity) of the similarity matrix. This enhances the quality of the similarity-based decision making  相似文献   

5.
Multimedia Tools and Applications - This paper presents a novel and fast method for k-means clustering based object tracking for coloured frames, based on histogram back-projection method. The...  相似文献   

6.
In this paper, we make an effort to overcome the sensitivity of traditional clustering algorithms to noisy data points (noise and outliers). A novel pruning method, in terms of information theory, is therefore proposed to phase out noisy points for robust data clustering. This approach identifies and prunes the noisy points based on the maximization of mutual information against input data distributions such that the resulting clusters are least affected by noise and outliers, where the degree of robustness is controlled through a separate parameter to make a trade-off between rejection of noisy points and optimal clustered data. The pruning approach is general, and it can improve the robustness of many existing traditional clustering methods. In particular, we apply the pruning approach to improve the robustness of fuzzy c-means clustering and its extensions, e.g., fuzzy c-spherical shells clustering and kernel-based fuzzy c-means clustering. As a result, we obtain three clustering algorithms that are the robust versions of the existing ones. The effectiveness of the proposed pruning approach is supported by experimental results.  相似文献   

7.
鉴于文本数据具有方向性数据的特征,可利用方向数据的知识完成对文本数据聚类,提出了模糊方向相似性聚类算法FDSC,继而从竞争学习角度,通过引入隶属度约束函数,并根据拉格朗日优化理论推导出鲁棒的模糊方向相似性聚类算法RFDSC.实验结果表明RFDSC算法能够快速有效地对文本数据集进行聚类.  相似文献   

8.
Clustering is a useful tool for finding structure in a data set. The mixture likelihood approach to clustering is a popular clustering method, in which the EM algorithm is the most used method. However, the EM algorithm for Gaussian mixture models is quite sensitive to initial values and the number of its components needs to be given a priori. To resolve these drawbacks of the EM, we develop a robust EM clustering algorithm for Gaussian mixture models, first creating a new way to solve these initialization problems. We then construct a schema to automatically obtain an optimal number of clusters. Therefore, the proposed robust EM algorithm is robust to initialization and also different cluster volumes with automatically obtaining an optimal number of clusters. Some experimental examples are used to compare our robust EM algorithm with existing clustering methods. The results demonstrate the superiority and usefulness of our proposed method.  相似文献   

9.
This paper addresses three major issues associated with conventional partitional clustering, namely, sensitivity to initialization, difficulty in determining the number of clusters, and sensitivity to noise and outliers. The proposed robust competitive agglomeration (RCA) algorithm starts with a large number of clusters to reduce the sensitivity to initialization, and determines the actual number of clusters by a process of competitive agglomeration. Noise immunity is achieved by incorporating concepts from robust statistics into the algorithm. RCA assigns two different sets of weights for each data point: the first set of constrained weights represents degrees of sharing, and is used to create a competitive environment and to generate a fuzzy partition of the data set. The second set corresponds to robust weights, and is used to obtain robust estimates of the cluster prototypes. By choosing an appropriate distance measure in the objective function, RCA can be used to find an unknown number of clusters of various shapes in noisy data sets, as well as to fit an unknown number of parametric models simultaneously. Several examples, such as clustering/mixture decomposition, line/plane fitting, segmentation of range images, and estimation of motion parameters of multiple objects, are shown  相似文献   

10.
总结了数据挖掘中聚类算法的研究现状,分析比较了它们的差异及局限性。提出了一种新的聚类方法。通过实例得出该方法为数据挖掘提供了有效的平台。  相似文献   

11.
This paper is concerned with accurate and efficient fingerprint matching. We have two main contributions:
(1)
define a novel feature vector for each fingerprint minutia based on the global orientation field. These features are used to identify corresponding minutiae between two fingerprint impressions by computing the Euclidean distance between vectors.
(2)
novel distortion-tolerant matching algorithm based on the closest triangle is developed. Furthermore, fingerprint directional field is also used to compute the final matching score combining with minutiae elaborately.
A series of experiments conducted on the public data collection, DB3, FVC2002, demonstrates the effectiveness of our method.  相似文献   

12.
The consensus clustering technique combines multiple clustering results without accessing the original data. Consensus clustering can be used to improve the robustness of clustering results or to obtain the clustering results from multiple data sources. In this paper, we propose a novel definition of the similarity between points and clusters. With an iterative process, such a definition of similarity can represent how a point should join or leave a cluster clearly, determine the number of clusters automatically, and combine partially overlapping clustering results. We also incorporate the concept of “clustering fragment” into our method for increased speed. The experimental results show that our algorithm achieves good performances on both artificial data and real data.  相似文献   

13.
Iterative refinement clustering algorithms are widely used in data mining area, but they are sensitive to the initialization. In the past decades, many modified initialization methods have been proposed to reduce the influence of initialization sensitivity problem. The essence of iterative refinement clustering algorithms is the local search method. The big numbers of the local minimum points which are embedded in the search space make the local search problem hard and sensitive to the initialization. The smaller number of local minimum points, the more robust of initialization for a local search algorithm is. In this paper, we propose a Top–Down Clustering algorithm with Smoothing Search Space (TDCS3) to reduce the influence of initialization. The main steps of TDCS3 are to: (1) dynamically reconstruct a series of smoothed search spaces into a hierarchical structure by ‘filling’ the local minimum points; (2) at the top level of the hierarchical structure, an existing iterative refinement clustering algorithm is run with random initialization to generate the clustering result; (3) eventually from the second level to the bottom level of the hierarchical structure, the same clustering algorithm is run with the initialization derived from the previous clustering result. Experiment results on 3 synthetic and 10 real world data sets have shown that TDCS3 has significant effects on finding better, robust clustering result and reducing the impact of initialization.  相似文献   

14.
Contaminant intrusion in a water distribution network is a complex but a commonly observed phenomenon, which depends on three elements – a pathway, a driving force and a contamination source. However, the data on these elements are generally incomplete, non-specific and uncertain. In an earlier work, Sadiq, Kleiner, and Rajani (2006) have successfully applied traditional Dempster–Shafer theory (DST) to estimate the “risk” of contaminant intrusion in a water distribution network based on limited uncertain information. However, the method used for generating basic probability assignment (BPA) was not very flexible, and did not handle and process uncertain information effectively. In this paper, a more pragmatic method is proposed that utilizes “soft” computing flexibility to generate BPAs from uncertain information. This paper compares these two methods through numerical examples, and demonstrates the efficiency and effectiveness of modified method.  相似文献   

15.
Pattern Analysis and Applications - We propose a novel method for large-scale image stitching that is robust against repetitive patterns and featureless regions in the imagery. In such cases,...  相似文献   

16.
A novel kernel method for clustering   总被引:10,自引:0,他引:10  
Kernel methods are algorithms that, by replacing the inner product with an appropriate positive definite function, implicitly perform a nonlinear mapping of the input data into a high-dimensional feature space. In this paper, we present a kernel method for clustering inspired by the classical k-means algorithm in which each cluster is iteratively refined using a one-class support vector machine. Our method, which can be easily implemented, compares favorably with respect to popular clustering algorithms, like k-means, neural gas, and self-organizing maps, on a synthetic data set and three UCI real data benchmarks (IRIS data, Wisconsin breast cancer database, Spam database).  相似文献   

17.
A least biased fuzzy clustering method   总被引:2,自引:0,他引:2  
A new operational definition of cluster is proposed, and a fuzzy clustering algorithm with minimal biases is formulated by making use of the maximum entropy principle to maximize the entropy of the centroids with respect to the data points (clustering entropy). The authors make no assumptions on the number of clusters or their initial positions. For each value of an adimensional scale parameter β', the clustering algorithm makes each data point iterate towards one of the cluster's centroids, so that both hard and fuzzy partitions are obtained. Since the clustering algorithm can make a multiscale analysis of the given data set one can obtain both hierarchy and partitioning type clustering. The relative stability with respect to β' of each cluster structure is defined as the measurement of cluster validity. The authors determine the specific value of β' which corresponds to the optimal positions of cluster centroids by minimizing the entropy of the data points with respect to the centroids (clustered entropy). Examples are given to show how this least biased method succeeds in getting perceptually correct clustering results  相似文献   

18.
The approach called the method of Fuzzy Joint Points (FJP) is considered in which the fuzziness of clusterization lies in the detailedness of taking into account properties of elements in forming sets of similar elements. Based on this approach, a new robust variant of the FJP algorithm is proposed. The properties of this FJP algorithm are analyzed and a sufficient condition for the correct recognition of the hidden structure of clusters is proved. __________ Translated from Kibernetika i Sistemnyi Analiz, No. 1, pp. 10–22, January–February 2008.  相似文献   

19.
The existence of multiple modalities poses a challenge to the design of multimedia data clustering systems, as the unsupervised nature of the problem makes it very difficult to determine a priori whether a single modality should dominate the clustering process, or if modalities should be combined somehow. In order to fight against these indeterminacies—which come on top of those referring to the selection of the optimal clustering algorithm and data representation for the problem at hand–, this work introduces robust multimedia clustering, a one-shot methodology for domain independent multimedia data clustering based on hybrid multimodal fusion. By means of experimentation, we firstly justify the motivation of the proposed methodology by proving the relevance of multimedia clustering indeterminacies. Subsequently, a specific multimedia clustering system based on the requirements of the methodology is implemented and evaluated on three multimedia clustering applications—music genres, photographic topics and audio-visual objects classification—as a proof of concept, analyzing the quality of the obtained partitions and the time complexity of the proposal. The experimental results reveal that the implemented system, which includes a self-refining consensus clustering procedure for attaining high levels of robustness, allows to obtain, in a fully unsupervised manner, better quality partitions than 93 % of the clusterers available in our experiments, being even able to improve the quality of the best ones and outperforming state-of-the-art alternatives.  相似文献   

20.
Clustering is an important research topic of data mining. Information bottleneck theory-based clustering method is suitable for dealing with complicated clustering problems because that its information loss metric can measure arbitrary statistical relationships between samples. It has been widely applied to many kinds of areas. With the development of information technology, the electronic data scale becomes larger and larger. Classical information bottleneck theory-based clustering method is out of work to deal with large-scale dataset because of expensive computational cost. Parallel clustering method based on MapReduce model is the most efficient method to deal with large-scale data-intensive clustering problems. A parallel clustering method based on MapReduce model is developed in this paper. In the method, parallel information bottleneck theory clustering method based on MapReduce is proposed to determine the initial clustering center. An objective method is proposed to determine the final number of clusters automatically. Parallel centroid-based clustering method is proposed to determine the final clustering result. The clustering results are visualized with interpolation MDS dimension reduction method. The efficiency of the method is illustrated with a practical DNA clustering example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号