共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the limits of reserves and price for the high rank coal, the low rank coal has been employed as fuel for power generation in China and will be eventually employed in the world. To burn low rank coal, centrally fuel-rich swirl coal combustion burner has been studied in Harbin Institute of Technology. This paper reviews and analyzes the major research results. The work has included both experiments and numerical simulation. The experiments were conducted using small-scale single-phase experimental equipment, a gas/particle two-phase test facility and 200- and 300-MWe wall-fired utility boilers. For the burner, the primary air and glass beads partially penetrate the central recirculation zone and are then deflected radially. At the center of the central recirculation zone, there is high particle volume flux and large particle size. For the burners the local mean CO concentrations, gas temperatures and temperature gradient are higher, and the mean concentrations of O2 and NOx in the jet flow direction in the burner region are lower. Moreover, the mean O2 concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. Centrally fuel-rich burners have been successfully used in 200- and 300-MWe wall-fired pulverized coal utility boilers. 相似文献
2.
Yaodong Wang Lin Lin Shengchuo Zeng Jincheng Huang Anthony P. Roskilly Yunxin He Xiaodong Huang Shanping Li 《Applied Energy》2008
A conceptual analysis of the mechanism of the Miller cycle for reducing NOx emissions is presented. Two versions of selected Miller cycle (1 and 2) were designed and realized on a Rover “K” series 16-valve twin-camshaft petrol engine. The test results showed that the application of the Miller cycle could reduce the NOx emissions from the petrol engine. For Miller cycle 1, the least reduction rate of NOx emission was 8% with an engine-power-loss of 1% at the engine’s full-load, compared with that of standard Otto cycle. For Miller cycle 2, the least reduction rate of NOx emission was 46% with an engine-power-loss of 13% at the engine’s full-load, compared with that of standard Otto cycle. 相似文献
3.
The conversion of nitric oxide (using CNG/air as fuel/oxidizer) inside a porous medium is investigated in this study. Unlike freely propagating flames, porous burners provide a solid medium that facilitates heat exchange with the gaseous phase. The heat exchange allows the stabilization of a variety of fuel mixtures from lean to rich and with a variety of calorific values. In addition, it allows the control of the reaction zone temperature and thus the control of pollutant formation while maintaining flame stability. An experimental porous burner was designed and manufactured for this purpose. The effects of equivalence ratio and flow velocity on the flame stabilization, NOx and TFN (total fixed nitrogen) conversion ratios, and temperature profiles along the burner are investigated. In addition, numerical calculations using the PLUG flow simulator model and the GRI 3.0 kinetic mechanism reveals the key reactions which control the conversion efficiency. It was found that under slightly fuel-rich conditions (φ?1.3) NOx mostly converts to N2 with a maximum conversion ratio of 65%, while for higher equivalence ratios (φ>1.3) a large proportion of NOx converts to NH3. Results from experiments and numerical modeling showed that the temperature profile along the burner has significant effects on the NOx and TFN conversion ratios. It was also found that temperatures between 1000 and 1500 K are most desirable for NOx and TFN conversion in the porous burner. Analysis of the chemical paths for the low- and high-equivalence-ratio cases showed that the formation of nitrogen-containing species under very rich conditions (φ>1.3) is due to the increased importance of the HCNO path as compared to the HNO path. The latter is the dominant path at low equivalence ratios (φ?1.3) and leads to the formation of N2. The NO concentration in the initial mixture was found to improve the conversion by up to 20% at low equivalence ratios (φ?1.3) and to have negligible effect at higher equivalence ratios. 相似文献
4.
Industrial experiments were performed for a retrofitted 660 MWe full-scale down-fired boiler. Measurements of ignition of the primary air/fuel mixture flow, the gas temperature distribution of the furnace and the gas components in the furnace were conducted at loads of 660, 550 and 330 MWe. With decreasing load, the gas temperature decreases and the ignition position of the primary coal/air flow becomes farther along the axis of the fuel-rich pipe in the burner region under the arches. The furnace temperature also decreases with decreasing load, as does the difference between the temperatures in the burning region and the lower position of the burnout region. With decreasing load, the exhaust gas temperature decreases from 129.8 °C to 114.3 °C, while NOx emissions decrease from 2448 to 1610 mg/m3. All three loads result in low carbon content in fly ash and great boiler thermal efficiency higher than 92%. Compared with the case of 660 MWe before retrofit, the exhaust gas temperature decreased from 136 to 129.8 °C, the carbon content in the fly ash decreased from 9.55% to 2.43% and the boiler efficiency increased from 84.54% to 93.66%. 相似文献
5.
6.
We measured various operational parameters of a 200-MWe, wall-fired, lignite utility boiler under different loads. The parameters measured were gas temperature, gas species concentration, char burnout, component release rates (C, H and N), furnace temperature, heat flux, and boiler efficiency. Cold air experiments of a single burner were conducted in the laboratory. A double swirl flow pulverized-coal burner has two ring recirculation zones that start in the secondary air region of the burner. With increasing secondary air flow, the air flow axial velocity increases, the maximum values for the radial velocity, tangential velocity, and turbulence intensity all increase, and there are slight increases in the air flow swirl intensity and the recirculation zone size. With increasing load gas, the temperature and CO concentration in the central region of burner decrease, while O2 concentration, NOx concentration, char burnout, and component release rates of C, H, and N increase. Pulverized-coal ignites farther into the burner, in the secondary air region. Gas temperature, O2 concentration, NOx concentration, char burnout and component release rates of C, H, and N all increase. Furthermore, CO concentration varies slightly and pulverized-coal ignites closer. In the side wall region, gas temperature, O2 concentration, and NOx concentration all increase, but CO concentration varies only slightly. In the bottom row burner region the furnace temperature and heat flux increase appreciably, but the increase become more obvious in the middle and top row burner regions and in the burnout region. Compared with a 120-MWe load, the mean NOx emission at the air preheater exits for 190-MWe load increases from 589.5 mg/m3 (O2 = 6%) to 794.6 mg/m3 (O2 = 6%), and the boiler efficiency increases from 90.73% to 92.45%. 相似文献
7.
J. Rodríguez-Fernández A. Tsolakis R.F. Cracknell R.H. Clark 《International Journal of Hydrogen Energy》2009
An ultra-low sulphur diesel (ULSD) fuel and a synthetic gas-to-liquid (GTL) fuel, besides different types of standard and reformed EGR, were evaluated in a single-cylinder, direct injection, diesel engine equipped with hydrocarbon-selective catalytic reduction (HC-SCR) aftertreatment system. The results obtained were statistically analysed (at 95% statistical significance) to identify the most significant factors that affect NOx emissions and to search for the optimum operation conditions in order to minimize these emissions. For that purpose, a fully crossed factorial experimental design was used, including two different engine speeds (1200 and 1500 rpm), two engine loads (25% and 50%), and four EGR/REGR ratios (0%, 10%, 20% and 30%) resulting in almost one hundred tests. An optimal combination of fuel type, REGR type and REGR ratio was proved to reduce around 89–95% of the reference NOx emissions. In general, at 25% engine load GTL fuelling combined with the reformed EGR with the highest hydrogen content was found the most desirable, as the hydrogen sharply increased the NOx conversion in the SCR catalyst. Differently, at 50% load standard EGR was sufficient to reach high NOx reductions. These findings may be used for the implementation of a system on-board capable to switch from EGR to REGR, which will help engine manufacturers to meet the future emission regulations. 相似文献
8.
Christian Lund Rasmussen 《Combustion and Flame》2008,154(3):529-545
The CH4/O2/NOx system is investigated in a laboratory-scale high pressure laminar flow reactor with the purpose of elucidating the sensitizing effects of NOx on CH4 oxidation at high pressures and medium temperatures. Experiments are conducted at 100, 50, and 20 bar, 600-900 K, and stoichiometric ratios ranging from highly reducing to oxidizing conditions. The experimental results are interpreted in terms of a detailed kinetic model drawn from previous work of the authors, including an updated reaction subset for the direct interactions of NOx and C1-2 hydrocarbon species relevant to the investigated conditions. The results reveal a significant decrease in the initiation temperature upon addition of NOx. A similar effect is observed with increasing pressure. The sensitizing effect of NOx is related to the hydrocarbon chain-propagating NO/NO2 cycle operated by NO2+CH3?NO+CH3O and NO+CH3OO?NO2+CH3O as well as the formation of chain-initiating OH radicals from interactions between NO/NO2 and the H/O radical pool. At low temperatures, reactions between NO/NO2 and CH3O/CH2O also gain importance. The results indicate a considerable intermediate formation of nitromethane (CH3NO2) as a characteristic high-pressure phenomenon. The formation of CH3NO2 represents an inactivation of NOx, which may result in a temporary reduction of the overall hydrocarbon conversion rate. 相似文献
9.
Formation of NOx in counterflow methane/air triple flames at atmospheric pressure was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. Results indicate that in a triple flame, the appearance of the diffusion flame branch and the interaction between the diffusion flame branch and the premixed flame branches can significantly affect the formation of NOx, compared to the corresponding premixed flames. A triple flame produces more NO and NO2 than the corresponding premixed flames due to the appearance of the diffusion flame branch where NO is mainly produced by the thermal mechanism. The contribution of the N2O intermediate route to the total NO production in a triple flame is much smaller than those of the thermal and prompt routes. The variation in the equivalence ratio of the lean or rich premixed mixture affects the amount of NO formation in a triple flame. The interaction between the diffusion and the premixed flame branches causes the NO and NO2 formation in a triple flame to be higher than in the corresponding premixed flames, not only in the diffusion flame branch region but also in the premixed flame branch regions. However, this interaction reduces the N2O formation in a triple flame to a certain extent. The interaction is caused by the heat transfer and the radical diffusion from the diffusion flame branch to the premixed flame branches. With the decrease in the distance between the diffusion flame branch and the premixed flame branches, the interaction is intensified. 相似文献
10.
Full-scale experiments were performed on a 300 MWe utility boiler retrofitted with air staging. In order to improve boiler thermal efficiency and to reduce NOx emission, the influencing factors including the overall excessive air ratio, the secondary air distribution pattern, the damper openings of CCOFA and SOFA, and pulverized coal fineness were investigated. Through comprehensive combustion adjustment, NOx emission decreased 182 ppm (NOx reduction efficiency was 44%), and boiler heat efficiency merely decreased 0.21%. After combustion improvement, high efficiency and low NOx emission was achieved in the utility coal-fired boiler retrofitted with air staging, and the unburned carbon in ash can maintain at a desired level where the utilization of fly-ash as byproducts was not influenced. 相似文献
11.
A series of LaNi1−xFexO3 (x = 0.0, 0.2, 0.4, 0.7, and 1.0) perovskites were synthesized and characterized by X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), H2-temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The perovskites were investigated for selective catalytic reduction of NOx by hydrogen (H2-SCR). It is shown that Fe addition into LaNiO3 leads to a promoted efficiency of NOx removal, as well as a high stability of perovskite structure. Moreover, easy reduction of Ni3+ to Ni2+ with the aid of appropriate Fe component mainly accounts for the enhanced activity. Meanwhile, deactivation of the sulfated catalysts is due to that sulfates mainly deposit on active Ni component while doping of Fe can protect Ni to some extent at the expense of partial sulfation. 相似文献
12.
In this paper, a new technology for a tangential firing pulverized coal boiler, high efficiency and low NOx combustion technology with multiple air-staged and a large-angle counter flow fuel-rich jet (ACCT for short) is proposed. To verify the characteristics of this technology, experiments of two combustion technologies, ACCT and CFS-1 (Concentric Firing System-1), are carried out under a cold model of a 1025 t/h tangential firing boiler with a PDA (particle dynamics anemometer). The distributions of velocity, particle concentration, particle diameters and the particle volume flux of primary air and secondary air are obtained. The results show that the fuel-rich primary air of ACCT can go deeper into the furnace and mix with the main flow better, which means that the counter flow of fuel-rich jets in ACCT can realize stable combustion, low NOx emission and slagging prevention. 相似文献
13.
An experimental and numerical investigation of counterflow prevaporized partially premixed n-heptane flames is reported. The major objective is to provide well-resolved experimental data regarding the detailed structure and emission characteristics of these flames, including profiles of C1-C6, and aromatic species (benzene and toluene) that play an important role in soot formation. n-Heptane is considered a surrogate for liquid hydrocarbon fuels used in many propulsion and power generation systems. A counterflow geometry is employed, since it provides a nearly one-dimensional flat flame that facilitates both detailed measurements and simulations using comprehensive chemistry and transport models. The measurements are compared with predictions using a detailed n-heptane oxidation mechanism that includes the chemistry of NOx and PAH formation. The reaction mechanism was synergistically improved using pathway analysis and measured benzene profiles and then used to characterize the effects of partial premixing and strain rate on the flame structure and the production of NOx and soot precursors. Measurements and predictions exhibit excellent agreement for temperature and major species profiles (N2, O2, n-C7H16, CO2, CO, H2), and reasonably good agreement for intermediate (CH4, C2H4, C2H2, C3Hx) and higher hydrocarbon species (C4H8, C4H6, C4H4, C4H2, C5H10, C6H12) and aromatic species (toluene and benzene). Both the measurements and predictions also indicate the existence of two partially premixed regimes; a double flame regime for ?<5.0, characterized by spatially separated rich premixed and nonpremixed reaction zones, and a merged flame regime for ?>5.0. The NOx and soot precursor emissions exhibit strong dependence on partial premixing and strain rate in the first regime and relatively weak dependence in the second regime. At higher levels of partial premixing, NOx emission is increased due to increased residence time and higher peak temperature. In contrast, the emissions of acetylene and PAH species are reduced by partial premixing because their peak locations move away from the stagnation plane, resulting in lower residence time, and the increased amount of oxygen in the system drives the reactions to the oxidation pathways. The effects of partial premixing and strain rate on the production of PAH species become progressively stronger as the number of aromatic rings increases. 相似文献
14.
Gihun Lim Sungwon Lee Cheolwoong Park Young Choi Changgi Kim 《International Journal of Hydrogen Energy》2014
Hydrogen-compressed natural gas blend (HCNG) engines can extend the lean burn limit because of the wide flammability range of hydrogen. Lean combustion helps facilitate high efficiency and fundamentally reduces NOx emission. Increasing the compression ratio (CR) of an HCNG engine was reported to improve its thermal efficiency. However, the high risk of knock occurrence and the increase in NOx emission can hinder CR increase. 相似文献
15.
In this research, design factors for a heat exchanger and boiler were investigated using a simplified model of a heat exchanger and pilot condensing boiler, respectively. Specifications of each heat exchanger component (e.g., upper heat exchanger (UHE) and lower heat exchanger (LHE); coil heat exchanger (CHE); baffles) were investigated using a model apparatus, and the comprehensive performance of the pilot gas boiler was examined experimentally. The heating efficiency of the boiler developed was about 90% when using the optimal designed heat exchangers. Compared to a conventional Bunsen-type boiler, the heating efficiency was improved about 10%. Additionally, NOx and CO emissions were about 30 ppm and 160 ppm, respectively, based on a 0% O2 basis at an equivalence ratio of 0.70, which is an appropriate operating condition. However, the pollutant emission of the boiler developed is satisfactory considering the emission performance of a condensing boiler, even though CO emission must be reduced. 相似文献
16.
Cold airflow experiments on a small-scale burner model, as well as in situ experiments on a centrally fuel-rich swirl coal combustion burner were conducted. Measurements were taken from within a 300 MWe wall-fired pulverized-coal utility boiler installed with eight of centrally fuel-rich swirl coal combustion burners in the bottom row of the furnace during experiments. Various primary air ratios, flow characteristics, gas temperature and gas species concentrations in the burner region were measured. The results of these analyses show that with decreasing primary air ratio, the swirl intensity of air, divergence angles and maximum length and diameter of the central recirculation zone all increased, and the turbulence intensity of the jet flow peaked but decayed quickly. In the burner nozzle region, gas temperature, temperature gradient and CO concentration increased with decreasing primary air ratio, while O2 and NOx concentration decreased. Different primary air ratios, the gas temperatures and gas species concentrations in the side-wall region varied slightly. 相似文献
17.
Tao Huang 《Journal of power sources》2009,192(2):285-290
PtRuMoOx and PtRuWOx catalysts supported on multi-wall carbon nanotubes (MWCNTs) are prepared by ultrasonic-assisted chemical reduction method. XRD measurements indicate that Pt exists as face-centered cubic structure, Ru is alloyed with platinum, and the metal oxides exist as an amorphous structure. TEM pictures show that PtRuMoOx and PtRuWOx catalysts are well dispersed on the surface of MWCNTs with the particle size of about 3 nm and a narrow particle size distribution. The electrochemical properties of the catalysts for methanol electrooxidation are studied by cyclic voltammetry (CV), chronoamperometry (CA) and chronopotentiometry (CP). The onset potentials for methanol oxidation on PtRuMoOx and PtRuWOx are more negative than that of pure Pt catalyst, shifting negatively by about 0.20 V and have better electrocatalytic activities than PtRu/MWCNTs. 相似文献
18.
简要阐述了燃气锅炉低氮排放技术,并对烟气再循环(FGR)技术进行了详细介绍。从经济性方面分析,选择合适的烟气再循环率可减小FGR对锅炉效率的影响,并可实现减排的目标;提出燃烧器和锅炉的研究方向是如何提高锅炉传热效率,并将FGR对锅炉热效率的影响降到最低,以便更好地实现节能减排的目标。 相似文献
19.
为达到锅炉污染物排放标准的要求,并实现在役循环流化床锅炉可采用选择性非催化还原(SNCR)方式低成本脱除NOx的目标,对NOx的生成、降低NOx原始生成的炉内条件、脱硝工艺的选择等方面进行了阐释.从工程实践出发,对1台130 t·h-1高温高压循环流化床锅炉的相应结构进行了分析,提出了改造方案.该方案实施后达到了良好的改造效果. 相似文献
20.
M.M. Islam T. SakuraiA. Yamada S. OtagiriS. Ishizuka K. MatsubaraS. Niki K. Akimoto 《Solar Energy Materials & Solar Cells》2011,95(1):231-234
Quantitative phase analysis of Cu(In1−xGax)Se2 (CIGS) thin film grown over Mo coated soda lime glass substrates was studied by Rietveld refinement process using room temperature X-ray data at θ-2θ mode. Films were found to contain both stoichiometric Cu(In1−xGax)Se2 and defect related Cu(In1−xGax)3Se5 phases. Best fitting was obtained using crystal structure with space group I-42d for Cu(In1−xGax)Se2 and I-42m for Cu(In1−xGax)3Se5 phase. The effects of Ga/III (=Ga/In+Ga=x) ratio and Se flux during growth over the formation of Cu(In1−xGax)3Se5 defect phase in CIGS was studied and the correlation between quantity of Cu(In1−xGax)3Se5 phase and solar cell performance is discussed. 相似文献