共查询到19条相似文献,搜索用时 93 毫秒
1.
基于主元分析法的航空发动机传感器故障诊断研究 总被引:2,自引:0,他引:2
主要研究了主元分析方法在航空发动机传感器故障诊断中的应用,并提出了主元分析法故障诊断算法。假设只有传感器故障情况下,将传感器测量值所组成的测量空间分解为主元和残差两个子空间,并通过传感器实际测量数据与正常数据矩阵在残差空间上的投影做比较,对传感器故障进行故障诊断;针对航空发动机的压力温度转速等传感器常见的故障,通过运行故障仿真平台绘制了其多元统计特征图;分析仿真结果表明,主元分析法对航空发动机传感器具有很好的故障检测和故障诊断能力。 相似文献
2.
针对电力电子电路模型具有非线性,进行故障诊断比较困难这一问题,提出了一种基于高阶累积量与Fisher判别法的故障诊断方法。首先,利用高阶累积量(HOC)对电路可测点的响应信息进行处理,将处理得到的峰度和陡度作为故障的特征向量。再利用Fisher判别分析法对故障进行模式分类,得到最终的模式识别结果。所选实例证明了高阶累积量构造的特征向量可以区分各种故障模式,Fisher判别分析法识别故障的准确率很高。 相似文献
3.
4.
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。 相似文献
5.
6.
降维映射分析法及其应用 总被引:2,自引:1,他引:1
用人工神经网络将多维空间的样本数据降维映射到二维平面上,并生成目标函数的等值线,可全景式地展现出样本数据集操作空间的面貌和特征,由此可直接看出最优操作点或最优操作区域。映射平面上的任意点可通过逆映射算法将其还原到多维空间。本文对这个方法的基本原理进行了简要的描述,并用于操作优化的实例计算。演示的实例说明,这个方法比模式识别方法优越。 相似文献
7.
8.
提出了主元和线性判别的集成分析算法以实施模拟故障数据的特征提取过程和方法。该集成分析方法首先对模拟故障数据进行主元分析,然后在主元变换空间实行线性判别分析,最后将所获得的最优判别特征模式应用于模式分类器进行故障诊断。仿真结果表明,所提出的方法能够充分利用线性方法的计算简便优势,增强单一主元分析或线性判别分析的特征提取性能,获取故障数据集的本质特征,简化模式分类器的结构,降低系统运行的计算成本。 相似文献
9.
传统的多元统计过程控制(MSPC)的故障诊断方法要求观测变量数据服从高斯分布,然而实际化工流程中的仪表数据中难以满足这一要求。针对这一问题,提出在仪表数据中提取分离出非高斯信息和高斯信息,并分别利用独立元分析法和主元分析法建立不同的故障诊断模型。在检测到发生故障后,通过改进的贡献度算法定位出发生故障的仪表。通过对Tennessee Eastman(TE)过程数据进行仿真研究,验证了ICA-PCA故障诊断法在化工流程仪表不同故障诊断中的有效性。 相似文献
10.
11.
随着现代工业过程的不断发展,自动化设备越来越复杂。系统的安全性与可靠性是设备现代化的重要方面。数据驱动的故障诊断技术是复杂工业生产过程安全性与可靠性的重要保障之一。传统的Fisher判别分析方法:常常忽视了量纲在各过程变量特征提取过程中的影响。本文在回顾传统Fisher判别分析理论的基础上,指出了量纲及量纲标准化过程对判别分析过程产生的影响,并建立了一种相对Fisher判别分析方法:。先通过预处理的方法:消除量纲差异带来的虚假影响,然后根据系统要求对观测数据做相对化变换,从而更有效地获取各观测数据的代表信息及不同运行模式的判断阈值。最后,利用计算机仿真实验验证了本文方法:的有效性。 相似文献
12.
A. Sierra 《Pattern recognition》2002,35(6):1291-1302
This paper introduces a novel nonlinear extension of Fisher's classical linear discriminant analysis (FDA) known as high-order Fisher's discriminant analysis (HOFDA). The ability of the new method to capture nonlinear relationships stems from its use of an extended polynomial space constructed out of the original features. Furthermore, a genetic algorithm (GA) is used in order to incrementally generate an optimal subset of polynomial features out of an initial pool of minimal discriminants. This procedure yields surprisingly compact discriminants with state of the art recognition rates for the difficult UCI thyroid classification problem. 相似文献
13.
采用二维双向Fisher线性判别分析对掌纹图像进行特征提取,即通过在水平和垂直2 个方向上各执行1 次二维Fisher线性判别分析,能消除掌纹图像行和列的相关性。运用Fisher准则选取更适合于分类的矩阵分量,将特征信息压缩到图像矩阵的左上角,缩小了特征的维数。测试结果表明,该方法具有更高的识别率和更低的计算复杂度。 相似文献
14.
维数灾难是机器学习算法在高维数据上学习经常遇到的难题,基于局部敏感判别分析(locality sensitive discriminant analysis,LSDA),可以很好地解决维数灾难问题.且LSDA构建邻域时不能充分反映流形学习对邻域要求和克服测度扭曲问题,利用自适应邻域选择方法来度量邻域,同时,引入施密特正交化获得正交投影矩阵,提出一种自适应邻域选择的正交局部敏感判别分析算法.在ORL和YALE人脸数据库上进行实验,实验结果表明了该算法的有效性. 相似文献
15.
Guang Dai Author Vitae Author Vitae Yun-Tao Qian Author Vitae 《Pattern recognition》2007,40(1):229-243
Feature extraction is among the most important problems in face recognition systems. In this paper, we propose an enhanced kernel discriminant analysis (KDA) algorithm called kernel fractional-step discriminant analysis (KFDA) for nonlinear feature extraction and dimensionality reduction. Not only can this new algorithm, like other kernel methods, deal with nonlinearity required for many face recognition tasks, it can also outperform traditional KDA algorithms in resisting the adverse effects due to outlier classes. Moreover, to further strengthen the overall performance of KDA algorithms for face recognition, we propose two new kernel functions: cosine fractional-power polynomial kernel and non-normal Gaussian RBF kernel. We perform extensive comparative studies based on the YaleB and FERET face databases. Experimental results show that our KFDA algorithm outperforms traditional kernel principal component analysis (KPCA) and KDA algorithms. Moreover, further improvement can be obtained when the two new kernel functions are used. 相似文献
16.
为了提高人脸正确识别率和效率,在行列方向的二维线性判别分析((2D)2LDA)基础之上,提出了一种二维复判别分析(2DCCDA)的人脸识别方法.该方法通过(2D)2LDA并行提取到的行和列特征矩阵,利用复二维鉴别式分析(C2DLDA)将行和列特征融合成复数特征矩阵,从复数特征矩阵中提取出最具分类能力的系数组成特征向量.相比较二维线性判别分析(2DLDA)和(2D)2LDA方法,2DCCDA需要更少的特征系数来表征一幅图像,并且正确识别率也相应提高. 相似文献
17.
基于Gabor小波变换和最佳鉴别特征的掌纹识别 总被引:2,自引:1,他引:2
提出了一种提取掌纹图像特征的方法,该方法的实现过程如下:首先,计算掌纹图像上均布离散位置的二维Gabor小波变换系数的幅值,将其作为掌纹图像的原始特征;其次,利用主分量分析实现Gabor小波特征的降维;最后,通过线性判别分析提取最有利于分类的最佳鉴别特征。实验结果表明了该方法的有效性。 相似文献
18.
基于主元子空间故障重构技术的故障诊断研究 总被引:1,自引:0,他引:1
针对基于主元分析(PCA)的统计性能监控法,由于不用过程机理模型的信息,因此,对故障诊断问题有难以在理论上作系统分析的缺陷,于是提出了一种基于主元子空间故障重构技术的故障诊断方法。利用故障子空间的概念,在故障重构技术的基础上,研究基于T~2统计量的故障诊断问题,提出故障识别指标和诊断算法。通过对双效蒸发过程的仿真监测,验证该诊断方法的有效性。 相似文献
19.
Linear subspace analysis methods have been successfully applied to extract features for face recognition.But they are inadequate to represent the complex and nonlinear variations of real face images,such as illumination,facial expression and pose variations,because of their linear properties.In this paper,a nonlinear subspace analysis method,Kernel-based Nonlinear Discriminant Analysis (KNDA),is presented for face recognition,which combines the nonlinear kernel trick with the linear subspace analysis method-Fisher Linear Discriminant Analysis (FLDA).First,the kernel trick is used to project the input data into an implicit feature space,then FLDA is performed in this feature space.Thus nonlinear discriminant features of the input data are yielded.In addition,in order to reduce the computational complexity,a geometry-based feature vectors selection scheme is adopted.Another similar nonlinear subspace analysis is Kernel-based Principal Component Analysis (KPCA),which combines the kernel trick with linear Principal Component Analysis (PCA).Experiments are performed with the polynomial kernel,and KNDA is compared with KPCA and FLDA.Extensive experimental results show that KNDA can give a higher recognition rate than KPCA and FLDA. 相似文献