首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Saccharomyces cerevisiae REV3 gene encodes the catalytic subunit of a non-essential DNA polymerase zeta, which is required for mutagenesis. The rev3 mutants significantly reduce both spontaneous and DNA damage-induced mutation rates. We have identified human cDNA clones from two different libraries whose deduced amino acid sequences bear remarkable homology to the yeast Rev3, and named this gene hREV3. The hREV3 gene was mapped to chromosome 1p32-33 by fluorescence in situ hybridization. The hREV3 encodes an mRNA of >10 kb, and its expression varies in different tissues and appears to be elevated in some but not all of the tumor cell lines we have examined. In light of recent reports of a putative mouse REV3, these results indicate that mammalian cells may also contain a mutagenic pathway which aids in cell survival at the cost of increased mutation.  相似文献   

3.
4.
CD38, a transmembrane glycoprotein widely expressed in vertebrate cells, is a bifunctional ectoenzyme catalyzing the synthesis and hydrolysis of cyclic ADP-ribose (cADPR). cADPR is a universal second messenger that releases calcium from intracellular stores. Since cADPR is generated by CD38 at the outer surface of many cells, where it acts intracellularly, increasing attention is paid to addressing this topological paradox. Recently, we demonstrated that CD38 is a catalytically active, unidirectional transmembrane transporter of cADPR, which then reaches its receptor-operated intracellular calcium stores. Moreover, CD38 was reported to undergo a selective and extensive internalization through non clathrin-coated endocytotic vesicles upon incubating CD38(+) cells with either NAD+ or thiol compounds: these endocytotic vesicles can convert cytosolic NAD into cADPR despite an asymmetric unfavorable orientation that makes the active site of CD38 intravesicular. Here we demonstrate that the cADPR-generating activity of the endocytotic vesicles results in remarkable and sustained increases of intracellular free calcium concentration in different cells exposed to either NAD+, or GSH, or N-acetylcysteine. This effect of CD38-internalizing ligands on intracellular calcium levels was found to involve a two-step mechanism: 1) influx of cytosolic NAD+ into the endocytotic vesicles, mediated by a hitherto unrecognized dinucleotide transport system that is saturable, bidirectional, inhibitable by 8-N3-NAD+, and characterized by poor dinucleotide specificity, low affinity, and high efficiency; 2) intravesicular CD38-catalyzed conversion of NAD+ to cADPR, followed by outpumping of the cyclic nucleotide into the cytosol and subsequent release of calcium from thapsigargin-sensitive stores. This unknown intracellular trafficking of NAD+ and cADPR based on two distinctive and specific transmembrane carriers for either nucleotide can affect the intracellular calcium homeostasis in CD38(+) cells.  相似文献   

5.
G alpha q is the alpha subunit of one of the heterotrimeric GTP-binding proteins that mediates stimulation of phospholipase C beta. We report the isolation and characterization of cDNA clones from a frontal cortex cDNA library encoding human G alpha q. The encoded protein is 359 amino acids long and is identical in all but one amino acid residue to mouse G alpha q. Analysis of human genomic DNA reveals an intronless sequence with strong homology to human G alpha q cDNA. In comparison to G alpha q cDNA, this genomic DNA sequence includes several small deletions and insertions that alter the reading frame, multiple single base changes, and a premature termination codon in the open reading frame, hallmarks of a processed pseudogene. Probes derived from human G alpha q cDNA sequence map to both chromosomes 2 and 9 in high-stringency genomic blot analyses of DNA from a panel of human-rodent hybrid cell lines. PCR primers that selectively amplify the pseudogene sequence generate a product only when DNA containing human chromosome 2 is used as the template, indicating that the authentic G alpha q gene (GNAQ) is located on chromosome 9. Regional localization by FISH analysis places GNAQ at 9q21 and the pseudogene at 2q14.3-q21.  相似文献   

6.
A novel human cDNA containing CAG repeats, designated B120, was cloned by PCR amplification. An approximately 300-bp 3' untranslated region in this cDNA was followed by a 3426-bp coding region containing the CAG repeats. A computer search failed to find any significant homology between this cDNA and previously reported genes. The number of CAG trinucleotide repeats appeared to vary from seven to 12 in analyses of genomic DNA from healthy volunteers. An approximately 8-kb band was detected in brain, skeletal muscle and thymus by Northern blot analysis. The deduced amino-acid sequence had a polyglutamine chain encoded by CAG repeats as well as glutamine- and tyrosine-rich repeats, which has also been reported for several RNA binding proteins. We immunized mice with recombinant gene product and established a monoclonal antibody to it. On Western immunoblotting, this antibody detected an approximately 120-kDa protein in human brain tissue. In addition, immunohistochemical staining showed that the cytoplasm of neural cells was stained with this antibody. These findings indicated that B120 is a novel cDNA with a CAG repeat length polymorphism and that its gene product is a cytoplasmic protein with a molecular mass of 120 kDa.  相似文献   

7.
Radixin is a cytoskeletal protein that may be important in linking actin to the plasma membrane. Recent cloning of the murine and porcine radixin cDNAs revealed a protein highly homologous to ezrin and moesin. We have cloned and sequenced the human radixin cDNA and found the predicted amino acid sequence for the human protein to be nearly identical to those predicted for radixin in the two other species. By Southern analyses of Chinese hamster x human somatic cell hybrid DNA and of PCR products derived from hybrids, the coding gene (RDX) was mapped to 11q. Fluorescence chromosomal in situ hybridization with a cDNA plasmid further localized this gene to band 11q23. However, PCR amplification with "radixin-specific" primers on the hybrid DNA panel yielded an additional, very similar DNA sequence that was further characterized by direct sequencing of PCR products. This sequence represents a truncated version and the respective locus (RDXP2) was assigned to Xp21.3. Furthermore, by employing a different set of primers, a third sequence was found that was 90% identical to the radixin sequence but contained termination codons and seemed to lack introns. This pseudogene (RDXP1) was mapped to 11p by Southern and PCR analyses.  相似文献   

8.
9.
Molecular cloning and expression of GalNAc alpha 2,6-sialyltransferase   总被引:1,自引:0,他引:1  
cDNA clones encoding GalNAc alpha 2,6-sialyltransferase (EC 2.4.99.3) have been isolated from chick embryo cDNA libraries using sequence information obtained from the conserved amino acid sequence of the previously cloned enzymes. The cDNA sequence included an open reading frame coding for 566 amino acids, and the deduced amino acid sequence showed 12% identity with that of Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase from chick embryo. The primary structure of this enzyme suggested a putative domain structure, like that in other glycosyltransferases, consisting of a short NH2-terminal cytoplasmic domain, a signal-membrane anchor domain, a proteolytically sensitive stem region, and a large COOH-terminal active domain. The identity of this enzyme was confirmed by the construction of a recombinant sialyltransferase in which the NH2-terminal part (232 amino acid residues) was replaced with the immunoglobulin signal sequence. The expression of this recombinant in COS-7 cells resulted in secretion of a catalytically active and soluble form of the enzyme into the medium. The expressed enzyme exhibited activity toward only asialomucin and (asialo)fetuin, no significant activity being detected toward the other glycoprotein and glycolipid substrates tested. 14C-Sialylated glycols obtained from asialomucin re-sialylated with this enzyme were identical to NeuAc alpha 2,6-GalNAc-ol and GlcNAc beta 1,3(NeuAc alpha 2,6) GalNAc-ol. Synthetic GalNAc-SerNAc also served as an acceptor for alpha 2,6-sialylation. These results clearly showed that the expressed enzyme is GalNAc alpha 2,6-sialyltransferase.  相似文献   

10.
STUDY OBJECTIVE: The present study was performed to determine the influence of a perioperative myocardial infarction on long-term mortality in patients who have undergone elective vascular surgery. STUDY DESIGN: This was a 4-year follow-up of patients who had undergone elective vascular procedures at a Veterans Affairs Medical Center. Between January 1989 and December 1990, 115 consecutive patients underwent surgery for either an expanding abdominal aortic aneurysm (AAA) (38%) or for pain in the lower extremities (62%). RESULTS: Vital status at 4 years postsurgery was determined for all patients. Thirty-day postoperative mortality was 3%, while estimates at 1, 2, 3, and 4 years were 19%, 26%, 35%, and 39%, respectively. Of the 45 patients who died within 4 years following surgery, the major causes of death were cardiac (40%), cancer (18%), cerebrovascular (13%), and peripheral vascular disease (11%). Univariate predictors of 1-year mortality on preoperative evaluation were an abnormal ECG, moderate or greater sized exercise thallium defect and left ventricular ejection fraction < or =40%, and a perioperative myocardial infarction. Univariate predictors of 4-year mortality were non-AAA surgery and diabetes mellitus. Perioperative myocardial infarction was a marginally significant independent predictor of 1-year mortality (p=0.06), while the need for non-AAA surgery was a strong independent predictor at 4 years. CONCLUSIONS: Cardiac mortality is the major cause of late death among patients undergoing elective vascular surgery. Although preoperative indicators of symptomatic coronary artery disease and nonfatal perioperative myocardial infarction identified those individuals at increased mortality in the first postoperative year, the extent of vascular disease at presentation may be a more important determinant of long-term survival. A randomized trial in such patients is needed to assess the best strategy for treating patients with coexistent coronary artery and vascular diseases.  相似文献   

11.
12.
13.
Previous studies have shown that tissue-factor-pathway inhibitor (TFPI) is an important regulator of the extrinsic pathway of blood coagulation through its ability to inhibit factor Xa and factor VIIa-tissue factor activity. We describe the molecular cloning and expression of a full-length cDNA that encodes a molecule, designated TFPI-2, that has a similar overall domain organization and considerable primary amino acid sequence homology to TFPI. After a 22-residue signal peptide, the mature protein contains 213 amino acids with 18 cysteines and two canonical N-linked glycosylation sites. The deduced sequence of mature TFPI-2 revealed a short acidic amino-terminal region, three tandem Kunitz-type domains, and a carboxyl-terminal tail highly enriched in basic amino acids. Northern analysis indicates that TFPI-2 is transcribed in umbilical vein endothelial cells, liver, and placenta. TFPI-2 was expressed in baby hamster kidney cells and purified from the serum-free conditioned medium by a combination of heparin-agarose chromatography, Mono Q FPLC, Mono S FPLC, and Superose 12 FPLC. Purified TFPI-2 migrated as a single band in SDS/PAGE and exhibited a molecular mass of 32 kDa in the presence and absence of reducing agent. The amino-terminal sequence of recombinant TFPI-2 was identical to that predicted from the cDNA. Despite its structural similarity to TFPI, the purified recombinant TFPI-2 failed to react with polyclonal anti-TFPI IgG. Preliminary studies indicated that purified recombinant TFPI-2 strongly inhibited the amidolytic activities of trypsin and the factor VIIa-tissue factor complex. In addition, the inhibition of factor VIIa-tissue factor amidolytic activity by recombinant TFPI-2 was markedly enhanced in the presence of heparin. TFPI-2 at high concentrations weakly inhibited the amidolytic activity of human factor Xa, but had no measurable effect on the amidolytic activity of human thrombin.  相似文献   

14.
Lipopolysaccharide was isolated from strain LMG 6999 of Burkholderia vietnamiensis. Degradative and NMR spectroscopic studies established the presence of two polymeric fractions based on the following trisaccharide repeating units: I:-->3)-alpha-D-Galp-(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc- (1-->; II:-->3)-alpha-D-GalpNAc-(1-->3)-beta-D-GalpNAc-(1-->4)- alpha-L-Rhap-(1-->. The same polymers have previously been found together in lipopolysaccharide from the reference strain for Burkholderia cepacia serogroup O4 and, individually, in those from B. cepacia serogroups C (I) and A (II).  相似文献   

15.
16.
A clone encoding glyoxalase II has been isolated from a human adult liver cDNA library. The sequence of 1011 base pairs consists of a full-length coding region of 780 base pairs, corresponding to a protein with a calculated molecular mass of 28,861 daltons. Identities (50-60%) were found to partial 5' and 3' cDNA sequences from Arabidopsis thaliana as well as within a limited region of glutathione transferase I cDNA from corn. A vector was constructed for heterologous expression of glyoxalase II in Escherichia coli. For optimal yield of enzyme, silent random mutations were introduced in the 5' coding region of the cDNA. A yield of 25 mg of glyoxalase II per liter of culture medium was obtained after affinity purification with immobilized glutathione. The recombinant enzyme had full catalytic activity and kinetic parameters indistinguishable from those of the native enzyme purified from human erythrocytes.  相似文献   

17.
A salmon cystatin cDNA clone was isolated from a chum salmon cDNA library. The clone encoded a full-length extracellular-type cystatin and its signal peptide and included 5'- and 3'-untranslated regions. The deduced amino acid sequence showed a high degree of sequence similarity to mammalian cystatin C, chicken egg cystatin, and chum salmon pituitary cystatin. By Northern blot analysis, the salmon cystatin was found to show apparently non-tissue specific expression. Because platyfish EHS cells transfected with a cystatin expression vector produced a 13 kDa mature cystatin in the culture medium, the salmon cystatin was considered to act as an extracellular type of cystatin in the fish cells. These findings indicate that the salmon cystatin is a homolog of mammalian cystatin C.  相似文献   

18.
19.
Following the cloning of the opioid receptors mu, kappa, and delta, we conducted a search for related receptors. Using oligonucleotides based on the opioid and also the structurally related somatostatin receptors, we amplified genomic DNA using the polymerase chain reaction and isolated fragments of novel G protein-coupled receptor genes. Two of these gene fragments designated clones 12 and 11 were used to isolate the full-length genes. The intronless coding sequences of these genes, named GPR7 and GPR8, shared 70% identity with each other, and each shared significant similarity with the sequences encoding transmembrane regions of the opioid and somatostatin receptors. GPR7 was mapped to chromosome 10q11.2-q21.1 and GPR8 to chromosome 20q13.3. Northern blot analysis using human mRNA demonstrated expression of GPR7 mainly in cerebellum and frontal cortex, while GPR8 was located mainly in the frontal cortex. In situ hybridization revealed expression of GPR7 in the human pituitary. A partial sequence of the mouse orthologue of GPR7 was obtained, and in situ hybridization demonstrated expression in discrete nuclei of brain, namely suprachiasmatic, arcuate, and ventromedial nuclei of hypothalamus. A stable cell line expressing the GPR7 gene was created, but expression levels of the receptor were low. The available pharmacology indicated binding to several opioid drugs such as bremazocine, levorphanol, and beta-FNA, but not to the opioid receptor subtype-selective mu, delta, or kappa agonists.  相似文献   

20.
Cyclic nucleotide-gated ion channels (CNGCs) play crucial roles in visual and olfactory signal transduction. As a first step to explore the presence of a CNGC gene in human heart, we cloned a human heart CNGC gene. The sequence consists of 111 bp 5' non-coding region and a 2064 bp open reading frame which is followed by a 459 bp 3' non-coding region. The predicted protein consists of 688 amino acids with a short highly charged segment rich in lysine and glutamate. Sequence comparison indicates that the human heart cDNA is almost identical to the retinal rod photo receptor CNGC cDNA. However, the human cardiac cDNA is lacking a 205 bp Alu fragment in the 5'-uncoding region, has a glutamic acid residue at amino acid position 129, and has a replacement of glutamic acid with a lysine residue at amino acid position 99. Data obtained with northern blot analysis confirm the presence of RNA for the CNGC alpha chain. This channel might play a role in cyclic nucleotide-mediated cellular processes, such as the inotropic effect in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号