首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
用于提高注水波及体积的抗盐聚合物   总被引:7,自引:0,他引:7  
本研究设计并生产出了梳形结构KYPAM抗盐聚合物。室内研究和现场试验证明,用于聚合物驱,KYPAM抗盐聚合物的增粘性能明显优于聚丙烯酰胺;用于交联聚合物,达到相同凝胶强度,KYPAM抗盐聚合物用量比聚丙烯酰胺少1/3。  相似文献   

2.
梳形KYPAM抗盐聚合物在油田中的应用   总被引:13,自引:0,他引:13  
介绍了梳形KYPAM抗盐聚合物工业产品的性能和现场应用结果。在相同条件下,梳形KYPAM抗盐聚合物的增教能力比聚丙烯酰胺(大庆生产)高58%~81%,比日本MO—4000高22%~70%,降低聚合物用量30%以上,驱油效果比聚丙烯酰胺提高约一倍,产油量提高了4.6倍,采收率增加2%。KYPAM的性能优异,已成为油田新一代的高效驱油剂,大庆油田正在三次采油中全面推广应用。  相似文献   

3.
耐温抗盐型聚丙烯酰胺研究进展   总被引:4,自引:0,他引:4  
介绍了提高聚丙烯酰胺耐温抗盐性能的主要途径,综述了国内外耐温抗盐型聚丙烯酰胺的研究进展,指出了合成耐温抗盐单体共聚物和梳形聚合物是提高聚合物耐温抗盐性的有效途径.  相似文献   

4.
本文综述了国内外水溶性耐温抗盐单体聚合物、疏水缔合聚合物、两性聚合物、梳形聚合物、溶液复合型、交联聚合物等方面的研究进展,并对以上几类水溶性聚合物的耐温抗盐机理进行了阐述和分析,指出了部分类型聚合物存在的缺陷,提出了耐温抗盐聚合物交联体系和溶液复合型在驱油用耐温抗盐聚合物方面具有极大的研究价值和应用前景。  相似文献   

5.
为了更好地与油层实现配伍,提高石油采收率,本文模拟大庆油田水质和地层条件,评价了四种驱油用新型聚合物的基础性能(梳形聚合物K35,刚性聚合物9L,疏水缔合聚合物,聚表剂I型)。实验结果表明,四种新型聚合物ASP体系增粘性能均优于2500万HPAM,且粘度随着剪切速率的增加而降低,随温度的升高而下降,梳型K35和疏水缔合聚合物体系粘度保留率在90天达70%以上,疏水缔合聚合物与碱、表活剂配伍性较好,在聚合物用量减少1/3情况下,驱油效率仍然明显优于2500万HPAM。  相似文献   

6.
以聚丙烯酰胺(HPAM)和梳形聚合物(KYPAM)两类具有代表性的聚合物为研究对象,对其驱油过程进行了室内实验模拟,分析不同相对分子质量HPAM和KYPAM的黏弹性、毛管数对原油驱采效率及残余油饱和度的影响规律,对比分析不同质量浓度条件下HPAM和KYPAM溶液在驱采过程中其自身黏度、幂律指数及黏弹性等参数的变化规律,结合实验结果剖析驱采过程中不同流体的微观作用机理.结果表明:驱油效率与毛管数成正相关,前者随后者的增加而增加;可以通过适当增加毛管数,或者提高聚合物溶液弹性以提高驱油效率;梳形聚合物具有较高的黏度和较低的弹性,在毛管数一致的情况下,其驱油效率的数值较低;驱油效率受聚合物溶液的弹性微观力主导,与黏度无关.  相似文献   

7.
三次采油用抗温抗盐聚合物分析   总被引:37,自引:1,他引:37  
对聚丙烯酰胺不能适应油田三次采油耐温耐盐要求的原因和目前国内外三次采油用抗温抗盐聚合物进行了分析,将国内外正在研制的三次采油用抗温抗盐聚合物分为五大类,并对不同结构聚合物的抗温抗盐作业机理进行了分析,指出当前研制抗温抗盐聚合物存在的问题,认为两性聚合物、疏水缔合聚合物、耐温耐盐单体共聚物、多元组合共聚物在目前情况下,还不适合用于油田三次采油,提出了提高油田三次采油用聚合物抗温抗盐能力的途径和抗温抗盐聚合物驱油剂的研究发展方向。  相似文献   

8.
以偶氮双异丁腈(AIBN)为引发剂,四氢呋喃为溶剂,采用甲基丙烯酸正丁酯(BMA)与聚乙二醇单甲醚甲基丙烯酸酯(POEM)共聚制备了支链上含聚乙二醇(PEG)的梳形共聚物。采用1H-NMR、DSC和表面接触角等方法研究了梳形共聚物的结构与性能。结果表明,聚合物中两结构单元的含量与单体投料比中的含量基本一致;投料比对聚合物的结构和性能有较为显著的影响;梳形聚合物的熔点、焓值及静态接触角随着共聚物中BMA含量的升高而升高。  相似文献   

9.
通过实验研究聚合物浓度、水矿化度、温度,聚合物分子量、剪切速率等对抗盐聚合物流变性的影响,总结了它们的影响规律。实验结果表明:在低剪切速率下抗盐聚合物较稳定,有利于驱油;抗盐聚合物受水矿化度影响不大;随着温度的升高,抗盐聚合物的动力黏度变化不大;对于抗盐聚合物,在任何剪切速率下,分子量大的动力黏度值也大;在低剪切速率(81 s~(-1))下,抗盐聚合物溶液的动力黏度与浓度无线性关系;当较高剪切速率(81 s~(-1))下,动力黏度与浓度成线性关系。通过抗盐聚合物与普通阴离子聚合物的对比研究,得出了抗盐聚合物更适用于驱油的优点。  相似文献   

10.
耐温抗盐型丙烯酰胺共聚物的研究进展   总被引:3,自引:3,他引:3  
根据分子设计原理,耐温抗盐型丙烯酰胺共聚物分耐温、耐盐单体共聚物、两性共聚物、疏水缔合共聚物、多元组合共聚物和梳形聚合物。综述了丙烯酰胺共聚物的耐温、抗盐的机理,介绍了驱油用耐温、抗盐型丙烯酰胺共聚物的研究现状及发展趋势,指出了丙烯酰胺共聚物在耐温、抗盐性能方面改进的关键是引入某些特殊结构。  相似文献   

11.
Novel high molecular weight comb-shaped polyethers were synthesized and used as the matrix of a polymer solid electrolyte. Both the main chain and the side chain of these polyethers consist of oxyethylene units. The new polyethers possess film-forming properties, because the weight-average molecular weights were over 106. The short side chains of oxyethylene units gave rise to less crystallization of poly(oxyethylene) segments and to an increase of ionic conductivity when doped with lithium perchlorate. © 1997 SCI.  相似文献   

12.
高马来酸酐SMA及梳型表面活性剂SMA-g-MPEG的制备   总被引:1,自引:0,他引:1  
分别采用均相聚合及非均相沉淀聚合法,制备了苯乙烯马来酸酐共聚物(SMA)。考察了引发剂种类和浓度、单体摩尔比、反应温度和反应时间等因素对SMA中马来酸酐(MA)摩尔分数的影响。优化的反应条件为:采用非均相聚合法,以过氧化二苯甲酰(BPO)为引发剂,聚合时间8 h,温度80℃,引发剂浓度0.01 mol/L,单体摩尔比n(St)∶n(MA)=1∶1.5,在该条件下,所合成SMA中马来酸酐的摩尔分数为37.43%,黏均相对分子质量约为89 000,交替性好。将得到的SMA与聚乙二醇单甲醚(MPEG)进行接枝反应,可以制得临界胶束质量浓度为1.03 g/L、表面张力为35.29 mN/m的梳型表面活性剂(SMA-g-MPEG)。  相似文献   

13.
A well-designed architecture is presented here to construct high-performance anion exchange membranes (AEMs). A series of quaternized fluorene-containing block poly(arylene ether sulfone ketone)s (QFPESK-m-n) is synthesized as the main chains, and grafted with comb-shaped C8 long alkyl chains for the AEMs. By varying the hydrophilic segment’ length, there has been a significant change in the microstructure as well as phase separation morphology of the membranes, as confirmed by atomic force microscopy. Hence the as-prepared AEMs with moderate ion exchange capacities (IECs) show enhanced hydroxide conductivities in the range of 28.8―94.7 mS⋅cm−1 from 30 to 80°C. Furthermore, based on the block backbones and hydrophobic comb-shaped alkyl chains, the AEMs show low-level swelling ratios of 4.3% to 9.2% at 30°C and from 6.2% to 13.2% at 80°C, and superior ratios of conductivity to swelling. In addition, the QFPESK-m-n AEMs also depict acceptable mechanical properties, good thermal stability and an optimizable alkaline stability.  相似文献   

14.
概述了原子转移自由基聚合(ATRP)的机理及其在引发体系、单体、反应温度和介质等方面的进展;着重论述了ATRP在进行聚合物分子设计,制备具有特定结构的聚合物,如无规、梯度和交替共聚物,嵌段共聚物,末端官能团聚合物,接枝和梳状聚合物,星型高支化聚合物等方面的应用。  相似文献   

15.
This is the third in a five-part series describing the preparation of tough, high-performance thermosets from low viscosity, autoclave-processable prepolymers. The first 2 articles described toughening of bismaleimides (BMI) and epoxy with linear imide thermoplastics of ∼ 1000 g/mol. Highly processable prepolymers were obtained, which resulted in increases in fracture toughness for BMI of ∼ 75–100%, while the fracture toughness of epoxy was increased by up to 220%. This article describes the preparation of a low-molecular-weight comb-shaped imide oligomer (∼ 4100 g/mol) and the effect of the oligomer architecture and end-group on BMI and epoxy prepolymer viscosity and fracture toughness. When an unreactive comb-shaped oligomer was incorporated in a BMI prepolymer (10% thermoplastic loading in the thermoset), the fracture toughness increased by 67% over that of an untoughed control, while a reactive oligomer increased the fracture toughness by 150% over an untoughened control. At 55°C, the viscosity of the solution of the reactive comb-shaped imide in B was only 6.2 Pa · S. When the oligomer was dissolved in epoxy resin, the viscosity was less than 0.2 Pa · S at 90°C, and the fracture toughness increased by 110 and 133% (at ∼ 13% loading in the thermoset), relative to an untoughened control, depending on the reactivity of the end group. The Tg and high-temperature modulus of BMI and epoxy remained approximately the same relative to the untoughened controls. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 943–951, 1998  相似文献   

16.
聚羧酸型梳状共聚物超分散剂的构性关系   总被引:13,自引:0,他引:13       下载免费PDF全文
以聚氧乙烯甲基烯丙基二醚 (APEO -n)、顺丁烯二酸酐 (MAn)、苯乙烯 (St)等为共聚单体合成了一系列聚羧酸型梳状共聚物 ,研究了共聚物的结构、组成等对分散性能的影响 .结果表明 ,接枝链的长度和密度影响超分散剂的性能 ,当接枝链长度为 2 0~ 6 0、St摩尔分数为 5 %~ 2 0 %时分散性能良好.  相似文献   

17.
以苯乙烯(St)、丙烯酸(AA)、丙烯酸羟乙酯(HEA)、马来酸单聚乙二醇单甲醚酯(MPEGMA)合成出新型梳型聚合物分散剂(CMD),通过改变单体组成得到性能最优的分散剂。表征了分散剂结构与性能,并用于吡蚜酮水悬浮剂的制备,测定其对悬浮剂Zeta电势、悬浮率、流变性、热贮稳定性的影响,结果表明CMD-3对25%吡蚜酮悬浮剂具有更好的分散稳定性。  相似文献   

18.
The samples of poly(12-acryloylaminododecanoic acid) were synthesized in micellar solutions of the monomer. The possibility of obtaining polymeric ionogenic surfactants of different molecular masses by varying concentration of monomeric surfactant was demonstrated. Detailed studies of the obtained polymer were performed using macromolecular hydrodynamic methods, dynamic light scattering, scanning probe microscopy and flow birefringence. The parameter of equilibrium rigidity of macromolecules (the Kuhn segment length A = 62 × 10−8 cm) and their effective hydrodynamic diameter were determined in mixed solvent (dioxane-cyclohexanol). Contributions made by optical microform and macroform effects to the observed dynamic birefringence were analyzed in detail. The intrinsic optical anisotropy of the monomer unit was estimated; it correlates well with the corresponding values for comb-shaped polymers of similar structure.  相似文献   

19.
Surface properties of a polymeric coating system have a strong influence on its performance and service life. However, the surface of a polymer coating may have different chemical, physical, and mechanical properties from the bulk. Significant progress has been made during the last three decades in the improvement of coating on materials. It has been established that polymeric blends have great potential in replacing economically many conventional materials because of their high specific strength. It is needed today, constantly, to improve the surface finish of any material for efficiency and shiny appearance in the severity of working environment. In packaging, materials having longer service lives and those are less corrosive are highly used. The effect of polymer based coating on the paper material improves its mechanical properties and flame resistance. Effect of flame retardant polymer coating illuminates the surface of the sheet. Important application of the material sheets will be for corrosion receptivity and humidity resistance of this material will certainly improve. Blends of PMM/PVDF are mainly used to improve piezoelectric properties of PVDF. In the present study we report the measurement of surface properties of thin layer of polymer blend coated on the cardboard sheet substrate material. Polymer blend solutions of PMMA/PVDF was prepared at 90/10 (w/w) proportions in miscible solvent of toluene and DMF. Thin film was prepared on the surface of cardboard by dipping the cardboard material in the solution. Thickness of the dried polymer coated paper sheet was measured to see uniformity of coating and for different concentrations. Surface properties such as flexibility index, yellowness, and gloss reflectance were also measured. The study on these polymer coated paper will help in improving the surface property of paper as well as its use in packaging. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4167–4171, 2006  相似文献   

20.
The enhancement of electro‐optical properties in reflective‐type dye polymer dispersed liquid crystal (PDLC) has been achieved by applying an additional white PDLC layer along with dye PDLC layer. This newly modified structure that consists of white PDLC layer and scattering reflector acts as an active reflector. In this practice, an additional arrangement of a polymer barrier layer is made‐up over white PDLC layer, to block the absorption of any solution from dye PDLC. The contrast ratio of this new configuration is almost doubled with low driving voltage and high ON reflectance. Simultaneously, the “off” state has been observed darker than single layer dye PDLC structure. This new configuration can be potentially significant for various display applications such as E‐paper, outdoor billboard, and flexible display. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号