首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用FT-IR、DSC研究苯并口恶嗪与环氧树脂通过熔融搅拌混合均匀后,固化过程中2种树脂发生开环共聚合的可能性。结果表明:苯并口恶嗪与环氧树脂熔融混合后,在高温区(180℃,200℃)发生了共聚反应,苯并口恶嗪开环过程形成的中间体可以作为环氧树脂的固化剂使用。玻璃化转变温度随着共聚体系中环氧树脂含量的增加先升高,环氧树脂质量分数超过30%后降低,当苯并口恶嗪与环氧树脂的质量比为70/30时,Tg达到最高(218℃),熔融共混在一起程度上提高了共聚体的玻璃化转变温度。  相似文献   

2.
使用虎杖苷作为酚源,糠胺作为胺源合成了全生物基苯并噁嗪单体化合物(PDA-fa)。采用核磁共振氢谱(1H NMR)和傅里叶红外光谱(FT-IR)表征了单体的结构,以差示扫描量热分析(DSC)和原位红外(in situ FT-IR)研究了其固化行为,单体的峰值固化温度为183℃,结构中的碳碳双键与呋喃结构都在噁嗪环的开环过程中形成交联。同时研究了聚苯并噁嗪的热性能及其膜的表面性能,固化后的聚苯并噁嗪的玻璃化转变温度达到230℃(DSC),231℃(TMA), Td5与Td10分别为306和338℃,残炭率高达61%。苯并噁嗪膜完全固化后的表面能为43.6 mJ/m2。  相似文献   

3.
采用双酚A型二氰酸酯对环氧树脂E51进行改性,并制备出玻璃纤维增强复合材料。通过傅里叶红外光谱(FTIR)、动态热力学分析(DMA)对不同质量比的环氧树脂/氰酸酯的共固化产物结构特征以及复合材料的玻璃化转变温度进行了研究,同时测定并讨论了对复合材料的拉伸性能、弯曲性能、吸湿性能的影响。结果表明,在环氧树脂和氰酸酯共固化体系中,随着氰酸酯含量的增加,固化物中三嗪环的相对含量增加,噁唑烷酮的相对含量降低。当环氧树脂/氰酸酯质量比为50/50时,复合材料的玻璃化转变温度为215.6℃,与未改性相比提高了49.7℃;650h后吸水率显著降低,仅为0.69%;但拉伸强度和弯曲强度略有降低。扫描电镜(SEM)分析表明,加入氰酸酯后,增加了复合材料的残余应力,使复合材料呈现出脆性断裂。  相似文献   

4.
一种新型烯丙基苯并噁嗪树脂的合成与表征   总被引:1,自引:1,他引:0  
以邻烯丙基苯酚为酚源,二氨基二苯基甲烷为胺源合成了3,3'-苯基甲基双(3,4-二氢-8-烯丙基-2H-1,3-苯并噁嗪)(简称BAB).采用傅里叶变换红外光谱、核磁共振氢谱对BAB的结构进行了表征;利用差示扫描量热仪对其热固化行为进行了研究.结果表明:噁嗪环和烯丙基双键的反应存在不同的反应机理,噁嗪环的开环反应先于烯丙基双键的加成反应;所得聚合物的玻璃化转变温度为140℃;800℃时,残炭保持率为33%.  相似文献   

5.
房晓敏  胡永佳  张璞  徐元清  丁涛  任艳蓉 《精细化工》2011,28(11):1051-1054
以水杨醛、对氨基苯酚和PEPA的衍生物为原料,合成了含笼型膦酸酯结构的苯并噁嗪单体(PEPA-Bz),用FTIR和1HNMR对其结构进行了表征。PEPA-Bz均聚物热失重分析(TGA)结果表明,该聚苯并噁嗪具有较好的热稳定性和成炭性能,起始热分解温度235℃,700℃时残炭率为53%,氧指数达到38.7。采用FTIR和TGA分别考察了PEPA-Bz与双酚A型苯并口恶嗪树脂(Ba)的开环共聚行为及共聚物的热性能。结果表明,含PEPA-Bz苯并噁嗪共聚物的阻燃性和成炭性明显优于不含PEPA-Bz的双酚A型苯并噁嗪树脂。  相似文献   

6.
本文应用示差量热扫描法(DSC)、动态热机械分析(DMA)和热失重(TGA)对氢氧化镁改性苯并噁嗪树脂的固化行为和热性能进行了研究。结果表明,氢氧化镁的加入对苯并噁嗪树脂的固化反应基本没有影响。DMA测试结果表明,氢氧化镁的加入使聚苯并噁嗪体系的玻璃化转变温度略微有所增高,室温下的储能模量略有增加。TGA测试结果表明,氢氧化镁的加入使聚苯并噁嗪体系的热稳定性提高,起始分解温度和800℃残重均有所提高。  相似文献   

7.
为了满足树脂基复合材料对树脂基体低黏度和高性能需求,通过Mannich反应成功合成了苯酚-糠胺型苯并噁嗪(P-fa)和对羟基苯甲醛-糠胺型苯并噁嗪(PA-fa)两种苯并噁嗪单体,通过傅里叶变换红外光谱(FTIR)和核磁共振氢谱(1H NMR)对其结构进行表征。并进一步将二者共混,制备了P-fa/PA-fa共混体系。采用凝胶化时间、差示扫描量热法(DSC)和黏度—温度曲线表征了各体系的聚合反应行为。结果表明,PA-fa结构中醛基引入可以降低体系的开环反应温度,缩短凝胶化时间,使得固化反应更加容易进行。同时,各体系在80~150℃范围内保持较低的黏度(10 mPa·s),有利于树脂基复合材料的加工。动态热机械分析(DMA)和热重分析(TG)表征了各体系的耐热性和热稳定性。结果表明,醛基的引入有效地提高了共混体系的交联密度、玻璃化转变温度和热稳定性,其中P(P/PA-21)体系的室温储能模量为3 400 MPa,玻璃化转变温度为294℃,800℃下的残炭率为61.5%。  相似文献   

8.
首先利用分子模拟技术建立了缩水甘油醚双酚A环氧树脂/二胺基苯并噁唑(E/ABO)固化环氧树脂体系的简单分子模型,并利用这些模型在计算机上对树脂体系的玻璃化转变温度进行研究,同时利用实验进行验证.结果表明,利用分子模拟技术可以很好地预测环氧树脂固化体系的玻璃化转变温度;同时新开发的E/ABO环氧树脂固化体系的玻璃化转变温...  相似文献   

9.
采用重结晶双酚A-苯胺型苯并恶嗪(BA-a)、双酚A型环氧树脂(BPA-E)与聚苯乙烯马来酸酐(EF40)进行共聚反应。通过示差扫描量热分析和红外光谱测试对苯并恶嗪/酸酐、环氧树脂/酸酐二元体系及苯并恶嗪/环氧树脂/酸酐三元体系的固化行为及各阶段固化物结构进行了研究。结果表明:酸酐与苯并恶嗪、环氧树脂均发生反应,分别生成不同类型的酯键结构。在三元体系中,酸酐与环氧树脂首先反应,形成醇酯键;其次,苯并噁恶嗪自聚,聚苯并恶嗪中的酚羟基与少量酸酐、环氧树脂反应,生成酚酯键、羧酸或醚式结构,同时新生成的羧酸结构可促进苯并恶嗪开环聚合。  相似文献   

10.
采用傅里叶红外光谱测试(FT-IR)、示差扫描量热法(DSC)等研究了重结晶双酚A/苯胺型苯并噁嗪热固化过程中的质量损失及其与固化机理之间的关系。通过收集苯并噁嗪固化过程中的小分子挥发物,结合FT-IR、核磁共振氢谱(1H-NMR)尝试解释了苯并噁嗪在固化过程中小分子的释放机理。结果表明,苯并噁嗪热固化过程中的质量损失和挥发物的产生均主要来自于噁嗪环开环后所形成中间体的裂解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号