首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure-shear plate impact experiments are used to investigate the viscoplastic response of metals at shear strain rates ranging from 105 s−1 to 107 s−1. Flat specimens with thicknesses between 300 μm and 3 μm are sandwiched between two hard, parallel plates that are inclined relative to their direction of approach. Nominal stresses and strains in the specimens are determined from elastic wave profiles monitored at the rear surface of one of the hard plates. Results are reviewed for two fcc metals: commercially pure aluminum and an aluminum alloy. New results are presented for bcc high purity iron, a high strength steel alloy and vapor deposited aluminum. For commercially pure aluminum the flow stress increases strongly with strain rate as strain rate increases from 104 s−1 to 105 s−1. At strain rates above 105 s−1 the flow stress, based on results for thin vapor-deposited aluminum specimens, increases strongly, but less than linearly, with increasing strain rate until it saturates at strain rates between 106 s−1 and 107 s−1. Preliminary results for high purity alpha-iron indicate that the flow stress increases smoothly over eleven decades of strain rate, and faster than logarithmically for strain rates from 102 s−1 to greater than 106 s−1. In contrast, for a high strength steel alloy the flow stress depends only weakly on the strain rate, even at strain rates at high as 105 s−1. Such contrasting behavior is attributed to differences in the relative importance of viscous glide and thermal activation as rate controlling mechanisms for dislocation motion in the various metals. Numerical studies indicate that experiments performed at the highest strain rates on the thinnest specimens are not adiabatic, thus requiring a full thermal-mechanical analysis in order to interpret the data.  相似文献   

2.
In the present paper, statistical models of the strain-rate dependence of the strength of fibres and fibre bundles are established and their stress/strain equations are deduced. According to the models, an experimental method of determining mechanical parameters in the stress/strain equations by means of tensile impact loading of the fibre bundles is set up. In order to examine the validity of the models and the experimental method, tensile tests of the E-glass fibre bundles were performed at strain rates ranging from 10−4 to 103 s−1. The test results are in good agreement with the models. Hence, the models are reliable and the test method is feasible. The statistical models successfully explain the rate-dependent behaviour of the E-glass fibre.  相似文献   

3.
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 × 108 s−1 to 1.4 × 1011 s−1. The results show that two critical strain rates, i.e., 5 × 109 s−1 and 8 × 1010 s−1, are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 × 109 s−1, Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {1 1 1} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8 × 1010 s−1, Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 × 109 s−1 and 8 × 1010 s−1, only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {1 1 1} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation.  相似文献   

4.
The effects of the process parameters, including deformation temperature and strain rate, on the deformation behavior and microstructure of an Al–4Cu–Mg alloy, have been investigated through isothermal compression. Experiments were conducted at deformation temperatures of 540 °C, 560 °C, and 580 °C, strain rates of 1 s−1, 1×10−1 s−1, 1×10−2 s−1, and 1×10−3 s−1, and height reductions of 20%, 40%, and 60%. The experimental results show that deformation temperature and strain rate have significant effect on the peak flow stress. The flow stress decreases with an increase of deformation temperature and/or a decrease of the strain rate. Above a critical value of the deformation temperature, the flow stress quickly reaches a steady value. Experimental materials A and B have equiaxed and irregular grains, respectively, prior to deformation. The microstructures vary with the process parameters in the semi-solid state. For material B, the irregular grains transform to equiaxed grains in the process of semi-solid deformation, which improves the deformation behavior.  相似文献   

5.
Electrical properties of Ge thin films evaporated on Si3N4 CVD-coated Si substrate were improved by introducing a heat treatment after the deposition of Ge films. Evaporation conditions were optimized by changing the substrate temperature and deposition rate, and then, heat treatment was performed. At substrate temperatures during the evaporation lower than 300 °C and higher than 400 °C, deposited films were amorphous and polycrystalline, respectively. At substrate temperatures lower than 400 °C, Ge films were evaporated without degrading the surface roughness. The Hall mobility of films evaporated at room temperature increased with increasing the substrate and heating temperature and showed about 400 cm2 V−1 s−1 for the hole concentration of 4 × 1017 cm−3 at the heating temperature of 900 °C. This value was almost comparable to that of p-type Ge single crystal.  相似文献   

6.
The superplastic deformation characteristics and microstructure evolution of the rolled AZ91 magnesium alloys at temperatures ranging from 623 to 698 K (0.67–0.76 Tm) and at the high strain rates ranging from 10−3 to 1 s−1 were investigated with the methods of OM, SEM and TEM. An excellent superplasticity with the maximum elongation to failure of 455% was obtained at 623 K and the strain rate of 10−3 s−1 in the rolled AZ91 magnesium alloys and its strain rate sensitivity m is high, up to 0.64. The dominant deformation mechanism in high strain rate superplasticity is still grain boundary sliding (GBS), which was studied systematically in this study. The dislocation creep controlled by grain boundary diffusion was considered the main accommodation mechanism, which was observed in this study.  相似文献   

7.
Ca65Mg15Zn20 bulk metallic glass (BMG) samples of dimensions 3.2 mm × 7 mm × 125 mm were prepared using a low-pressure die casting technique. These samples were ground to produce tensile test pieces in compliance with ASTM E8-04. This work is the first reported study of the tensile behaviour of Ca65Mg15Zn20 BMG in the supercooled liquid region (105–120 °C). Two deformation conditions were used for testing: (i) constant strain rate testing from 10−3 to 10−4 s−1 and (ii) constant load testing using loads of 20–50 N applied to a tensile sample during heating at a constant rate of 5 °C s−1. The maximum elongation to failure in the BMG was in excess of 850% for constant load testing although, under isothermal testing conditions, most samples failed after 200% elongation. It is concluded that large superplastic elongations (>500%) during isothermal tensile straining is difficult in this alloy due to the onset of crystallization.  相似文献   

8.
The nonlinear viscoelastic mechanical response of a conventional tank gun propellant, M30, is modeled using a “modified superposition integral” that incorporates the effects of microstructural fracture damage. Specifically, a linear, time-dependent kernel is convolved with the first-time derivative of a power-law function of stress and a damage “softening” that accounts for damage evolution by a microcrack growth mechanism. The microcrack damage function is a master curve formed from shifted isothermal, compressive, uniaxial constant strain rate (0.01 s−1 to 420 s−1) data on solid, right-circular cylinders of M30 gun propellant. An attractive feature of the model is its ability to predict work-softening behavior under conditions of monotonically increasing deformation. Time-dependent predictions of stress versus time, failure stress versus failure time, and failure stress versus strain rate, quantitatively agree with experimental results from constant strain rate tests on the propellant. Theoretical predictions of time-dependent stresses for Heaviside and “ballistic-like” strain histories are also provided.  相似文献   

9.
Slow strain rate tests were performed on longitudinal tensile specimens of 8090-T81 sheet under permanent immersion conditions in various synthetic environments. Strain rates were in the range 10−7−10−4 s−1. Environmentally assisted cracking is observed in aqueous chloride-carbonate-hydrogencarbonate solutions. Near neutral 3.5% NaCl solution and also 3% NaCl solution with hydrogen peroxide added do not promote stress corrosion cracking with 8090-T81 alloy sheet. The degradation of ductility found with tensile specimens immersed in the latter corrosive environments is caused by localized corrosion independent of stress. Fracture energy data obtained from slow strain rate tests in substitute ocean water reveal a large scatter. Again, the deterioration observed is not related to stress corrosion cracking. Slow strain rate tests were also carried out with longitudinal tensile specimens of 2091-T8X and 2091 CPHK-T8X alloy sheet using an aqueous solution of 3% NaCl + 0.3% H2O2. For the alloy 2091 CPHK-T8X, similar results were obtained to those with 8090-T81, whereas 2091-T8X sheet is prone to environment-induced cracking in the aqueous chloride-peroxide solution.  相似文献   

10.
Microstructural evolution during tensile deformation of injection molded polypropylene (PP) at the micro- and nano-scale level was studied using atomic force and scanning electron microscopy techniques. Atomic force microscopy (AFM) enabled microstructural changes of tensile deformed PPs with different percentage crystallinity to be captured. AFM of undeformed slow-cooled (SC-PP: high crystallinity) and water-quenched (WQ-PP: low crystallinity) PPs suggested that the fibrils are relatively more closely packed in the SC-PP with higher average surface height of 7.5 nm as compared to 5.4 nm in the case of WQ-PP. Tensile deformed SC-PP and WQ-PP at displacement rates of 125–500 mm/min (strain rates of 0.04 s−1 to 0.16 s−1) indicated that the fibrils/microfibrils are aligned along the tensile axis, with WQ-PP exhibiting enhanced stretching of fibrils/microfibrils/chain-folded lamellae in comparison to SC-PP. Three fracture morphologies were identified at different strain rates, and include crazing/tearing (C), brittle fracture in association with crazing/tearing (B1), and brittle fracture together with ductile pulling of ligaments (B2). The fracture morphology exhibited by both SC-PP and WQ-PP was similar, but the percent area fraction of the three identified morphologies varied. WQ-PP with lower crystallinity was characterized by a decrease in percent of crazing/tearing (C) and brittle+crazing/tearing (B1), and increase in brittle+ductile pulling of ligaments (B2). The fracture characteristics of PPs with differences in crystallinity was consistent with AFM observations.  相似文献   

11.
Superplasticity was investigated in powder-metallurgy (PM) processed 7475Al+0.7Zr alloy. Strain-rate-change (SRC) tests were carried out at various temperatures to examine the relationship between strain rate and flow stress. After the compensation by threshold stress, the superplastic flow was found to be well correlated with lattice diffusivity in aluminium, like that in the ingot-metallurgy (IM) processed 7475Al alloy having a coarser grain size. Large tensile elongations of up to 1000% could be obtained at a very high strain rate near 10−1 s−1 and at 515°C. Short fibre formation was observed after the superplastic deformation. This formation seemed to be related to liquid formation on the grain boundaries and similar evidences were found over a wide range of temperature, not necessarily near the incipient melting point.  相似文献   

12.
In this work, numerical and experimental studies of superplastic-like uniaxial tensile behavior of coarse-grained LY-12 have been performed. Larger tensile elongation to fracture is observed and several necks are exhibited at 10−1 and 10−4 s−1 respectively although not very clearly. Chaboche viscoplastic constitutive equations are used and implemented in a finite element code to simulate the process of necks formation and development before fracture during uniaxial tension. The simulated characteristics of more than one necks along the specimens help to obtain large elongation, which is in agreement with experimental observations. Local strain rate distribution as the function of strain can explain how and when microscopic necks take place.  相似文献   

13.
An apparatus was developed to facilitate application of an electro-thermo-chemical accelerator to high-speed deformation experiments. The apparatus is designed on the principle of sequential collision of elastic bodies. Speeds ranging from 600 to 780 m s−1 were achieved, and estimated strain rate of deformation is 107 s−1. The newly developed apparatus can be applied to various types of accelerators for attaining deformation speeds as high as several km s−1. Transmission electron microscopy of aluminum deformed at high speed by use of the apparatus revealed the formation of very small stacking fault tetrahedra (SFTs). This observation is quite new for aluminum; previously, SFTs had not been observed in aluminum, although deformation had been carried out at strain rates lower than 106 s−1. Use of the apparatus promises to provide new insight into high-speed deformation.  相似文献   

14.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

15.
Tensile deformation was carried out for a mechanically milled and thermo-mechanically treated Al–1.1Mg–1.2Cu (at.%) alloy at 748 K and three nominal strain rates of 10−3, 100, and 102 s−1. Despite the prevailing belief that superplasticity occurs by grain boundary sliding which requires slow strain rates at high temperatures, the maximum elongation was observed at the intermediate strain rate of 100 s−1, neither at the lowest nor the highest strain rates. In order to explain this phenomenon, the true stress–true strain behaviors at these three nominal strain rates were analyzed from a viewpoint of dislocation dynamics by computer-simulation with four variables of the thermal stress component σ*, dislocation immobilization rate U, re-mobilization probability of unlocked, immobile dislocations Ω and dislocation density at yielding ρ0. It can then be concluded that the large elongation (>400% in nominal strain) at the intermediate strain rate is produced by a combination of a very large Ω and a moderate U, resulting in a large strain rate sensitivity m value.  相似文献   

16.
In this study, the compression deformation behavior of a Ti6Al4V powder compact, prepared by the sintering of cold compacted atomized spherical particles (100–200 μm) and containing 36–38% porosity, was investigated at quasi-static (1.6×10−3–1.6×10−1 s−1) and high strain rates (300 and 900 s−1) using, respectively, conventional mechanical testing and Split Hopkinson Pressure Bar techniques. Microscopic studies of as-received powder and sintered powder compact showed that sintering at high temperature (1200 °C) and subsequent slow rate of cooling in the furnace changed the microstructure of powder from the acicular alpha () to the Widmanstätten (+β) microstructure. In compression testing, at both quasi-static and high strain rates, the compact failed via shear bands formed along the diagonal axis, 45° to the loading direction. Increasing the strain rate was found to increase both the flow stress and compressive strength of the compact but it did not affect the critical strain for shear localization. Microscopic analyses of failed samples and deformed but not failed samples of the compact further showed that fracture occurred in a ductile (dimpled) mode consisting of void initiation and growth in phase and/or at the /β interface and macrocracking by void coalescence in the interparticle bond region.  相似文献   

17.
Systematic experiments were carried out over a wide range of strain rate, 100–106 s−1, so as to reveal the deformation mode in bcc crystals, especially at high strain rate. Dislocation structure showed heterogeneous distribution at low strain rates in all three bcc metals examined. At higher strain rates exceeding 103 s−1, distribution of dislocations was random, and the formation of small dislocation loops was observed in V and Nb. In Mo, small dislocation loops were not formed by deformation, even at high strain rates. However, post-deformation annealing of an Mo specimen that had been deformed by 20% at 5×105 s−1 produced dislocation loops. The inside–outside contrast method identified these loops to be of vacancy type. These results reveal that in Mo vacancy clusters are not formed directly from the interaction of dislocations, but by the aggregation of vacancies. In V and Nb, the same formation process is believed to occur at high strain rates. These results suggest that the different mode of plastic deformation at high strain rates accompanied by production of vacancies also occurred in bcc metals.  相似文献   

18.
The effect of deformation speed on defect structures introduced into bulk gold specimens at 298 K has been investigated systematically over a wide range of strain rate from ′=10−2 to 106 s−1. As strain rate increased, dislocation structure changed from heterogeneous distribution, so-called cell structure, to random distribution. Also, stacking fault tetrahedra (SFTs) were produced at anomalously high density by deformation at high strain rate. The anomalous production of SFTs observed at high strain rate is consistent with the characteristic microstructure induced by dislocation-free plastic deformation, which has been recently reported in deformation of gold thin foils. Thus, the results of the present study indicate that high-speed deformation induces an abnormal mechanism of plastic deformation, which falls beyond the scope of dislocation theory. Numerical analysis of dislocation structure and SFTs revealed that the transition point of variation of deformation mode is around the strain rate of 103 s−1.  相似文献   

19.
In this paper, a dynamic damage model in ductile solids under the application of a dynamic mean tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage process under intense dynamic loading (strain rates ε 103 s−1). The evolution equation of the ductile void has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process in LY12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair agreement between computed and experimental results is obtained. Numerical analysis shows that the influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates.  相似文献   

20.
This paper proposes a bimodal Weibull distribution model for strain- rate- and temperature-dependent fiber strength. The relationships of the mechanical quantities between fiber and fiber bundles at different strain rates and temperatures under tensile impact are established. A method for determining mechanical parameters of fibers by tensile impact tests of fiber bundles is established. Experiments on E-glass bundles have been performed at six strain rates (90, 300, 800, 1100, 1300 and 1700 s−1) at three different temperatures (−70, 14, 80°C). According to the statistical analysis and models, the mechanical parameters for the fiber and their relationships with strain rate and temperature are obtained from the tensile impact experimental results. The emulated stress/strain curves from the model are in good agreement with the test data. The theoretical model and test results show that the shape parameters, βd1 and βd2, are not only strain rate independent but also temperature independent. The scale parameters σd01 and σd02, which change with strain rate and temperature, are not constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号