首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replacement of forage with cereal byproducts may be a viable alternative for feeding dairy cows. The objective of this experiment was to evaluate total tract digestion and rumen fermentation profile when diets were formulated to contain low-forage neutral detergent fiber (NDF) (12.6% forage NDF, 18.8% total NDF), adequate NDF from forages (20% forage NDF, 24.4% total NDF) or low-forage NDF with high levels of NDF from cereal byproducts (12.7% forage NDF, 35.1% total NDF). Sodium bicarbonate (0.8% of dry matter) was factorialized over these diets. Total tract apparent digestibilities of organic matter (OM) and carbohydrates were determined in 73 Holsteins. Eight rumen-cannulated cows were used concurrently to evaluate rumen fermentation profile and in situ degradation of forages. Bicarbonate did not increase NDF or OM digestibility, but increased intake of digestible OM. Rumen fermentation parameters were determined by dietary alfalfa NDF content. Adding alfalfa NDF to the low-forage, high-starch diet increased in situ degradation of forage NDF more than adding byproduct NDF. However, increased ruminal forage NDF degradability was not reflected in greater total tract NDF digestibility. Replacement of dietary starch with NDF from byproducts decreased OM digestibility, but energy intake was similar across diets due to increased intake.  相似文献   

2.
Forty Holstein cows were used in a completely randomized design with a 2-wk covariate period followed by a 6-wk experimental period to evaluate incremental substitution of nonforage fiber provided by dried distillers grains with solubles (DDGS) and soyhulls (SH) for starch provided by corn in the diet. Diets provided decreasing concentrations of starch: 29% starch with 0% DDGS; 26% starch with 7% DDGS; 23% starch with 14% DDGS; and 20% starch with 21% DDGS. Diets contained 27% corn silage, 22% alfalfa hay, and 51% concentrate mix and were formulated to be 17% crude protein, 4.7% fat, and 23% neutral detergent fiber from forage. Total neutral detergent fiber increased as DDGS and SH were included in the diet. Soyhulls were included in a linear fashion along with DDGS to replace soybean meal and expeller soybean meal, thereby maintaining a similar crude protein content across diets. Dry matter intake decreased linearly; consequently, feed efficiency tended to increase linearly as starch was replaced by nonforage fiber. There was no effect of diet on milk production or milk fat and protein percentage or yield. Milk fatty acid profiles were similar across diets. Other response variables, including 4% fat-corrected milk, total solids, and milk urea nitrogen, were unaffected by dietary treatments. Ruminal volatile fatty acid concentration did not differ between diets. Concentrations of blood glucose and β-hydroxybutyrate were similar across diets. Results from this research suggest that nonforage fiber from DDGS can partially substitute for starch from corn in dairy cow diets without affecting milk production and milk composition. Economic analysis of the diets showed that feeding DDGS and SH in substitution of corn was cost-effective. Results from this experiment indicate that DDGS and SH can replace corn as an energy source to decrease feed costs.  相似文献   

3.
Twelve early lactation Holstein cows (4 fistulated) were used in replicated 4x4 Latin squares with 4-wk periods to determine the effective neutral detergent fiber (NDF) content of wet corn gluten feed and to measure the effect of forage particle size on ruminal mat consistency and passage rate of wet corn gluten feed. Diets were 1) 23.3% NDF (17.4 percentage units of NDF from alfalfa silage), 2) diet 1 plus 11.1 additional percentage units of NDF from alfalfa silage, 3) diet 1 plus 10.7 percentage units of NDF from wet corn gluten feed, and 4) 8.6 percentage units of NDF from alfalfa silage plus 8.9 percentage units of NDF from coarsely chopped alfalfa hay and 10.7 percentage units of NDF from wet corn gluten feed. The calculated effective NDF factor for wet corn gluten feed, using change in milk fat concentration per unit change in NDF, was 0.74 compared with an assumed 1.0 for alfalfa silage. Rumination activity was measured to calculate a physically effective NDF factor for wet corn gluten feed, which was only 0.11 compared with 1.0 for alfalfa silage. Physically effective NDF also was determined for wet corn gluten feed by wet sieving; 22% of the particles were retained on the 3.35-mm screen or greater. Ruminal mat consistency increased and passage rate of wet corn gluten feed decreased with added hay. The inclusion of chopped alfalfa hay to a diet containing wet corn gluten feed increased ruminal mat consistency, rumination activity, and slowed passage rate, resulting in greater ruminal digestion of NDF from wet corn gluten feed. Depending on the response variable, the effectiveness of NDF from wet corn gluten feed varied from 0.11 to 0.74.  相似文献   

4.
We examined the effect of replacing corn silage (CS) with reconstituted alfalfa hay (RAH) or reconstituted beet pulp (RBP) in the starter diets on feeding behavior, sorting, and health criteria using 54 neonatal female Holstein calves that were assigned randomly to 3 groups receiving starter diets containing CS (10% on a dry matter basis), RAH, or RBP. The starter diets had the same nutrient composition and moisture level but differed in particle size distribution. Calves fed CS tended to have a lower intermeal interval compared with calves fed RAH before weaning; however, meal frequency and duration, eating rate, and meal size were not affected by treatment before and after weaning, which resulted in no changes in feed intake and time spent eating. Rumination frequency was higher for calves fed CS than for calves fed RAH or RBP after weaning. Feeding RBP decreased rumination duration compared with CS and RAH after weaning; however, calves fed RBP had a higher rumination bout interval compared with calves fed CS. Calves fed CS spent more time ruminating compared with calves fed RAH or RBP after weaning. Feeding CS tended to decrease and decreased time devoted to standing and lying, respectively, compared with calves fed RBP; however, calves fed RBP tended to spend more time on nonnutritive oral behaviors compared with calves fed RAH. Calves fed CS sorted against particles retained on the 8-mm sieve of the Penn State Particle Separator (PSPS) and for particles retained on the 1.18-mm sieve of the PSPS. Feeding RAH increased sorting for particles retained on the 8- and 1.18-mm sieves of the PSPS. Calves fed RBP sorted only for particles retained on the 1.18-mm sieve of the PSPS. Calves fed RBP tended to be more susceptible to developing pneumonia compared with calves fed CS or RAH; however, frequency and duration of diarrhea and pneumonia or number of days needed to medicate the diseases were unchanged across treatment groups. Initial (d 3) blood total protein concentration was similar (6.51 g/dL) across treatment groups. Overall, replacing CS with RAH or RBP did not affect time devoted to eating and feed intake due to no significant changes in meal size or intermeal interval before and after weaning. Calves showed feed sorting at the extent to which they balanced intake of nutrients and met their nutritional needs. Calves in general were healthy; therefore, CS, RAH, or RBP can be used interchangeably based on availability and competitive feed price.  相似文献   

5.
Two trials using lactating Holstein cows were conducted to evaluate effects of a diet containing oriental mustard bran on dry matter intake (DMI), milk production, milk components, and organoleptic properties. In experiment 1, 34 lactating cows (24 multiparous and 10 primiparous; days in milk ≥50 d) were used in a switchback design to determine the lactational response and organoleptic quality of milk when the diet contained 8% oriental mustard bran (MB) versus a control diet (CON). Mustard bran replaced a portion of soybean meal and all the beet pulp in the CON diet. Milk yields were greater for cows fed the MB diet; however, no differences were found in DMI, 3.5% fat- (FCM) or solids-corrected milk. Milk components and components production were not affected by treatment. Milk organoleptic qualities were not affected by diet. In experiment 2, 22 lactating cows (16 multiparous and 6 primiparous; days in milk ≥21 d) were assigned randomly within parity to receive MB or CON from wk 4 to 19 postpartum in a randomized complete block design. Cows were fed CON wk 1 to 3 postpartum. The MB diet contained the same ingredients as the CON, except sunflower seed and a portion of soybean meal were replaced with mustard bran. Milk and components data were collected during wk 3 postpartum and used as covariates to adjust treatment means. Intake was greater for cows fed the MB diet; however, daily milk, 3.5% FCM, and solids-corrected milk yields were not different between diets. Milk components and component yields were not affected by treatment. Milk urea concentration was less for cows fed the MB diet. Although cows fed the MB diet had greater DMI, this was not translated into a higher milk 3.5% FCM/DMI production efficiency ratio. During experiment 2, many cows fed MB experienced minor to severe hemolysis with bloody urine. This hemolysis believed to be caused by the S-methyl-cysteine sulfoxide contained in mustard bran could have affected milk production efficiency. The increased milk yield observed in experiment 1 was not observed in experiment 2. Adding 8% of MB to lactating cow diets had a mixed effect on DMI and milk production. Milk component yields and milk quality were not affected. Feeding this level of MB presents a hemolytic danger to lactating dairy cows.  相似文献   

6.
A study was conducted to evaluate whether the risk of acidosis in dairy cows can be lowered by increasing the physically effective fiber (peNDF) concentration of the diet, either through increased theoretical chop length of alfalfa silage or higher proportion of forage in the diet. The experiment was designed as a replicated 4 × 4 Latin square using 8 ruminally cannulated lactating dairy cows. Treatments were arranged in a 2 × 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios [dry matter (DM) basis]. Dietary peNDF concentration (DM basis) was determined from the sum of the proportion of dietary DM retained either on the 2 sieves (8 and 19 mm) or on the 3 sieves (1.18, 8, and 19 mm) of the Penn State Particle Separator multiplied by the neutral detergent fiber concentration of the diet. The dietary peNDF concentrations were altered by changing the F:C or the FPL, and ranged from 10.7 to 17.5% using 2 sieves, or from 23.1 to 28.2% using 3 sieves. Intake of peNDF was increased by increasing FPL but not by increasing F:C ratio because of the reduction of DM intake at the higher F:C ratio. Chewing activity, including number of chews and chewing time, increased with increasing F:C ratio or FPL. Mean ruminal pH was elevated by 0.4 and 0.2 units with increasing F:C ratio and FPL, respectively. Lowering the F:C ratio decreased the duration that ruminal pH was below 5.8 (1.2 vs. 8 h/d). Increased F:C ratio or FPL reduced ruminal volatile fatty acids concentration from 137 to 122 or from 133 to 126 mM, respectively, whereas acetate:propionate ratio was increased from 2.55 to 3.46 with increasing F:C ratio. Dietary peNDF concentration measured using 2 sieves was correlated to chewing time (r = 0.57) and mean ruminal pH (r = 0.75), whereas dietary peNDF concentration measured using 3 sieves was correlated to mean ruminal pH (r = 0.83) and negatively correlated to the time that pH was below 5.8 (r = −0.78). This study shows that the risk of ruminal acidosis is high for cows fed a low F:C diet. Increasing the proportion of forage in the diet helps prevent ruminal acidosis through increased chewing time, a change in meal patterns, and decreased ruminal acid production. Increasing FPL elevates ruminal pH, but in low forage diets, increased FPL does not alleviate subacute acidosis because the fermentability of the diet is high and changes in chewing activity are marginal.  相似文献   

7.
Chemical treatment may improve the nutritional value of corn crop residues, commonly referred to as corn stover, and the potential use of this feed resource for ruminants, including lactating dairy cows. The objective of this study was to determine the effect of prestorage chopping, hydration, and treatment of corn stover with Ca(OH)2 on the feeding value for milk production, milk composition, and dry matter intake (DMI). Multiparous mid-lactation Holstein cows (n = 30) were stratified by parity and milk production and randomly assigned to 1 of 3 diets. Corn stover was chopped, hydrated, and treated with 6% Ca(OH)2 (as-fed basis) and stored in horizontal silo bags. Cows received a control (CON) total mixed ration (TMR) or a TMR in which a mixture of treated corn stover and distillers grains replaced either alfalfa haylage (AHsub) or alfalfa haylage and an additional portion of corn silage (AH+CSsub). Treated corn stover was fed in a TMR at 0, 15, and 30% of the diet DM for the CON, AHsub, and AH+CSsub diets, respectively. Cows were individually fed in tiestalls for 10 wk. Milk production was not altered by treatment. Compared with the CON diet, DMI was reduced when the AHsub diet was fed and tended to be reduced when cows were fed the AH+CSsub diet (25.9, 22.7, and 23.1 ± 0.88 kg/d for CON, AHsub, and AH+CSsub diets, respectively). Energy-corrected milk production per unit of DMI (kg/kg) tended to increase with treated corn stover feeding. Milk composition, energy-corrected milk production, and energy-corrected milk per unit of DMI (kg/kg) were not different among treatments for the 10-wk feeding period. Cows fed the AHsub and AH+CSsub diets had consistent DMI over the 10-wk treatment period, whereas DMI for cows fed the CON diet increased slightly over time. Milk production was not affected by the duration of feeding. These data indicate that corn stover processing, prestorage hydration, and treatment with calcium hydroxide can serve as an alternative to traditional haycrop and corn silage in diets fed to mid-lactation dairy cows.  相似文献   

8.
High-fiber byproducts are generated by several industries, and the supplies of some of these nonforage fiber sources (NFFS) are increasing. Although NFFS generally have limited utility in nonruminant diets, dairy cattle nutritionists can use these products to partially replace both forages and concentrates in lactation diets. Research has shown that production responses vary, but under certain conditions, NFFS-based diets can maintain or improve performance of dairy cattle. Traditional dietary formulation strategies are not ideal when formulating diets to contain large concentrations of NFFS. When feeding high levels of NFFS (≥15% inclusion rates, dry matter basis), less physically effective fiber is required; however, determining if this requirement has been met can be challenging, mainly because of the lack of a broadly applicable method for quantifying effective fiber in the field. Nutritionists must also be conscious of the nutrient variation that exists among many NFFS. Strategies to reduce risks associated with this variability include purchasing feed from a sole supplier who demonstrates product consistency and combining multiple NFFS at lower inclusion rates. A targeted approach whereby nonforage fiber primarily replaces some forage fiber for higher-producing cows but partially replaces some starch for lower-producing cows can optimize nutrient utilization without sacrificing animal health. In summary, the judicious use of NFFS represents an opportunity to improve the productivity and health of cattle in all stages of lactation while potentially controlling feed costs.  相似文献   

9.
The objective of this study was to determine the effect of partial replacement of forage neutral detergent fiber (NDF) with by-product NDF in close-up diets of dairy cattle on periparturient metabolism and performance. Holstein cows (n = 45) and heifers (n = 19) were fed corn silage-based diets containing 1) 30% oat hay, or 2) 15% oat hay and 15% beet pulp from d −21 relative to expected parturition until parturition. After parturition, all animals received the same lactation diet. Animals were group-fed from d −21 to −10 relative to expected parturition and fed individually from d −10 until 14 d in milk. Animals were required to have at least 5 d of prepartum dry matter intake (DMI) data to remain on the study. Data were analyzed as a randomized design and subjected to ANOVA using the MIXED procedure of SAS. Close-up diet did not affect DMI, total tract nutrient digestibility, energy balance, or serum content of nonesterified fatty acids and β-hydroxybutyrate during the last 5 d prepartum. Prepartum body weight and body condition score were similar between treatments. There was no carryover effect of close-up diet on DMI, energy balance, milk yield, body weight, body condition score, or serum content of nonesterified fatty acids and β-hydroxybutyrate during the first 14 d in milk. In summary, partial replacement of forage NDF (oat hay) with by-product NDF (beet pulp) did not affect periparturient metabolism or performance.  相似文献   

10.
The objective of this study was to determine the effects of monensin (M) supplementation on lactation performance of dairy cows fed diets of either reduced (RS) or normal (NS) starch concentrations as total mixed rations. One hundred twenty-eight Holstein and Holstein × Jersey cows (90 ± 33 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each in a randomized controlled trial. Pens were then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments. A 4-wk covariate adjustment period preceded the treatment period, with all pens receiving NS supplemented with 18 g of monensin/t of dry matter (DM). Following the 4-wk covariate adjustment period, cows were fed their assigned treatment diets of NS with M (18 g of monensin/t), NS with 0 g of monensin/t (C), RS with M, or RS with C for 12 wk. Actual starch concentrations for the RS and NS diets were 20.4 and 26.9% (DM basis), respectively. Mean dry matter intake (DMI; 27.0 kg/d) was unaffected by the treatments. Feeding M compared with C and NS compared with RS increased milk yield by 1.3 and 1.5 kg/d per cow, respectively. Milk protein percentage and yield and lactose yield were increased and milk urea nitrogen was decreased for NS compared with RS. Feeding M increased actual and component-corrected milk feed efficiencies (component-corrected milk yield/DMI) and lactose yield and tended to increase milk urea nitrogen compared with C. Milk protein percentage was decreased for M compared with C, but milk fat percentage and yield, protein yield, and lactose percentage were unaffected by M. We observed a tendency for a starch × monensin interaction for milk feed efficiency (actual milk yield/DMI); M tended to increase efficiency more for NS than for RS. Starch and monensin had minimal effects on milk fatty acid composition and yields. Feeding RS decreased milk and protein yields, but component-corrected milk yields and feed efficiencies were similar for RS and NS. Monensin increased feed efficiency and lactation performance for both dietary starch concentrations.  相似文献   

11.
Groundwater depletion is one of the most pressing issues facing the dairy industry in arid regions. One strategy to improve the industry's drought resilience involves feeding drought-tolerant forage crops in place of traditional forage crops such as alfalfa and corn silage. The objective of this study was to assess the productivity of lactating dairy cows fed diets with teff hay (Eragrostis tef) as the sole forage. Teff is a warm-season annual grass native to Ethiopia that is well adapted to drought conditions. Nine multiparous Holstein cows (185 ± 31 d in milk; mean ± standard deviation) were randomly assigned to 1 of 3 diets in a 3 × 3 Latin square design with 18-d periods (14 d acclimation and 4 d sampling). Diets were either control, where dietary forage consisted of a combination of corn silage, alfalfa hay, and native grass hay, or 1 of 2 teff diets (teff-A and teff-B), where teff hay [13.97 ± 0.32% crude protein, dry matter (DM) basis] was the sole forage. All 3 diets were formulated for similar DM, crude protein, and nonfiber carbohydrate concentrations. Control and teff-A were matched for concentrations of neutral detergent fiber (NDF) from forage (18.2 ± 0.15% of DM), and teff-B included slightly less, providing 16.6% NDF from forage. Dry matter intake, milk and component production, body weight, body condition score, as well as DM and NDF digestibility were monitored and assessed using mixed model analysis, with significance declared at P < 0.05. Treatment had no effect on dry matter intake (28.1 ± 0.75 kg/d). Similarly, treatment had no effect on milk production (40.7 ± 1.8 kg/d). Concentrations of milk fat (3.90 ± 0.16%) and lactose (4.68 ± 0.07%) were also unaffected by treatment. Teff-A and teff-B increased milk protein concentration compared with the control (3.07 vs. 3.16 ± 0.09%). Treatment had no effect on energy-corrected milk yield (43.4 ± 1.3 kg/d), body weight, or body condition score change. Additionally, treatment had no effect on total-tract DM or NDF digestibility. Results from this study indicate that teff hay has potential to replace alfalfa and corn silage in the diets of lactating dairy cattle without loss of productivity.  相似文献   

12.
Two trials were conducted during consecutive summers to compare performance of lactating cows fed four varieties of tall fescue soilage. The first trial was conducted in 1983 and the second in 1984 using 25 midlactation Holsteins. Treatments included endophyte-free Kenhy; 8.1% endophyte-infected Johnstone (a prevarietal release); endophyte-free Kentucky 31; 63% endophyte-infected Kentucky 31; and orchardgrass or alfalfa as controls. In 1983, concentrate was fed twice each day at the rate of 4.1 kg per feeding, and in 1984, 4.5 kg were fed twice daily for first 4 wk and 4.1 kg per feeding thereafter. Intake of Kenhy was higher than all other tall fescue treatments when data for both trials were combined. Means of the high endophyte Kentucky 31 group were lower than all other treatments during both trials for milk yield, dry matter intake, body weight change, and serum prolactin in 1984 while higher for rectal temperature. Improved intake and performance of the cows consuming Kenhy compared with those consuming endophyte-free Kentucky 31 indicated the improved forage quality of this variety. Decreased performance of dairy cows consuming endophyte-infected tall fescue, even at a relatively low infection, was evident.  相似文献   

13.
The effects of dietary nonforage fiber sources on production responses of lactating dairy cattle have been well described, but interactions with other components of the diet have been less thoroughly explored. We investigated the effects of adding 2 commonly fed fat sources to a ration featuring high levels of nonforage fiber supplied by a corn milling by-product. Midlactation Holstein cows were blocked by parity, stratified by days in milk, and randomly assigned to 1 of 6 pens (12 cows/pen). Pens were randomly assigned to treatment sequences in a 3 × 3 Latin square design, where the treatments consisted of prilled saturated fat (SAT; Energy Booster 100, Milk Specialties Co., Dundee, IL), calcium salts of long-chain fatty acids (UNS; Megalac, Church and Dwight Co. Inc., Princeton, NJ), or no added dietary fat (control), with fat sources included to provide 1.2% added fat (dry matter basis). Treatment periods were 21 d; milk and feed samples were collected and milk yield and feed intake were recorded for the last 4 d of each period. Results were analyzed with mixed models with pen as the experimental unit, and orthogonal contrasts were employed to evaluate the overall effect of added fat and the effect of fat source. Dry matter intake and milk yield tended to increase with added fat. Protein content decreased with fat supplementation, to a greater degree for UNS than for SAT, but protein yield was not affected. Fat content, fat yield, and energy-corrected milk yield were not affected by treatment. Conversion of feed to milk tended to increase for UNS compared with SAT. Fat supplementation to diets high in nonforage fiber had effects that were similar to those reported for more traditional lactation diets, except for the dry matter intake response.  相似文献   

14.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.  相似文献   

15.
16.
Metabolism of the lactating cow. I. Animal elements of a mechanistic model   总被引:1,自引:0,他引:1  
A mechanistic model of dairy cow metabolism is described. The model was constructed as part of a programme directed toward quantitative and dynamic analysis of concepts and data regarding factors which influence the partition of nutrients in lactating dairy cows. Sensitivity and behavioural analyses undertaken using the model indicate that concepts and data arising from tissue level experiments conducted in vitro can be used to structure and parameterize whole-animal models since the quantitative and dynamic behaviour of such a model is acceptable. These analyses indicate further that such models can be used to evaluate factors which influence patterns of nutrient utilization. By way of illustrating the model's utility regarding evaluation of concepts relating to the interpretation of energy balance experiments, results of a simulated energy balance experiment are presented. Apparent costs of milk synthesis are partitioned among biosynthetic costs, physiological costs, ion transport costs and the reductions in energy expenditures in synthesis of body components which accompany increasingly negative energy balances due to feed restriction.  相似文献   

17.
Five Holstein cows (5 wk postpartum) were used in a Latin square design (15-d periods) to determine rumen fill and fractional rates of ruminal digestion and passage. Treatments consisted of prebloom, midbloom, and full bloom alfalfa hay, mature bromegrass hay, and corn silage fed in diets containing forage: concentrate in a 60:40 ratio (DM basis) formulated to be isonitrogenous. Intake of DM averaged 4.0% of body weight for prebloom alfalfa and corn silage. Milk yield and DM intake were lower for full bloom alfalfa and bromegrass than for prebloom alfalfa. Digestibility of organic matter was 7.5 percentage units lower for full bloom than for prebloom alfalfa. Weight of DM in the rumen was higher for midbloom and full bloom alfalfa and bromegrass than with prebloom alfalfa. Ruminal retention time of Yb applied to forage was longer for bromegrass than for prebloom alfalfa. Fractional rates of in situ NDF digestion were slower for full bloom alfalfa and bromegrass than for prebloom alfalfa. Results suggest that the point of limitation of feed intake due to gut fill is dependent on forage quality as well as energy demand of the animal. Dry matter fill of the rumen was more closely related to rates of ruminal digestion and passage than to total tract digestibility or maximum digestibility after lengthy in situ fermentation.  相似文献   

18.
19.
《Journal of dairy science》2017,100(7):5250-5265
Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly decreased DM, organic matter, crude protein, and starch digestibility. Cows consuming the oat silage diet had higher milk urea N and urinary urea N concentrations. Milk N efficiency was decreased by the sorghum diet. Diet did not affect enteric methane or carbon dioxide emissions. This study shows that oat silage can partially replace corn silage at 10% of the diet DM with no effect on MY. Brown midrib sorghum silage harvested at the milk stage with <1% starch may decrease DM intake and MY in dairy cows.  相似文献   

20.
Three experiments were conducted to determine the maximal amount of concentrate and forage that could be replaced with a new wet corn milling product. The corn milling product contained 23.1% crude protein, 9.9% ruminally undegradable protein, 13.7% acid detergent fiber, 40.3% neutral detergent fiber, and 2.6% ether extract (% of dry matter; DM). In experiment 1, 16 Holstein cows were assigned to one of four diets in a replicated 4 x 4 Latin square design with 28-d periods. The four diets contained 54.3% forage (alfalfa:corn silages, 1:1 DM basis) with the wet corn milling product replacing 0, 50, 75, or 100% of the concentrate portion (corn and soybean meal) of the diet (DM basis). The diets containing wet corn milling product resulted in 7.8% lower DM intake, equivalent milk production (28.5 kg/d), and 13.6% greater efficiency of 4% fat-corrected milk (FCM) production than the control diet. There was no effect of diet on ruminal pH. In experiment 2, 16 Holstein cows were assigned to one of four diets in a replicated 4 x 4 Latin square design with 28-d periods. The 100% concentrate replacement diet from experiment 1 was used as control diet. For the test diets, forage was replaced with 15, 30, or 45% of the corn milling product (DM basis). Efficiency of FCM production (1.16) was not affected by diet. Rumination time was reduced for the 30 and 45% forage replacement diets, but ruminal pH was unaffected. In experiment 3, 30 Holstein cows were assigned at parturition to either a control diet (no corn milling product) or a diet containing 40% corn milling feed in place of both forage and concentrate (optimal levels from experiments 1 and 2) for 9 wk. The diet containing corn milling feed resulted in 21% greater efficiency of FCM production than the control diet. These results indicate that a new feed product based on wet corn milling ingredients has the potential to effectively replace all of the concentrate and up to 45% of the forage in the diet for lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号