共查询到17条相似文献,搜索用时 62 毫秒
1.
在高光谱影像地物分类应用中时常因光谱波段数多而导致"维数灾难"问题,提出了一种鉴别稀疏保持嵌入的维数约简算法。该方法利用稀疏表示的自然鉴别力,分别构建了类内e_1图和类间e_1图;在低维嵌入空间中,保持同类数据的内在稀疏流形结构,同时分离开非同类数据,提取出鉴别特征。DSPE不仅继承了稀疏表示的优点,而且增加了非同类数据间的可分性。在PaviaU和Urban高光谱数据集上的地物分类实验结果表明,该方法的总体分类精度分别提高到87.53%和80.49%。提出的方法能自适应地揭示出数据间的内在关系,更有效地提取出鉴别特征,改善地物分类精度。 相似文献
2.
为了提取高光谱图像中的深度鉴别特征,往往需要大量标记样本,但是高光谱图像样本标定困难,基于高光谱图像的“图谱合一”特性提出一种基于深度-流形学习的半监督双流网络。该网络用卷积网络和神经网络分别提取少量标记样本以及大量无标记样本中的空-谱联合特征,然后分别构建基于监督图和非监督图的流形重构图模型,以挖掘其中的本征流形结构。在此基础上设计了基于均方误差和流形学习的联合损失函数,以协同度量流形边界和空-谱概率残差,实现双流网络的一体化反馈和优化,进而实现地物分类。在WHU-Hi龙口和黑河高光谱数据集上实验的总体分类精度分别达到97.53%和96.79%,有效提升了地物分类能力。 相似文献
3.
针对传统图嵌入方法仅采用单一图结构无法有效表征高维数据中复杂本征结构,本文提出了一种半监督多图嵌入(SSMGE)方法,并应用于高光谱影像特征提取。该方法首先利用标记样本的类内、类间近邻点来构建类内超图、类间超图、类内普通图、类间普通图,然后通过无标记样本的近邻点和远离点构建无监督本征超图和惩罚超图,并以多图协同方式来表征高维数据间的复杂几何关系,实现鉴别特征提取。本文提出的SSMGE方法不仅能有效揭示数据点间超图和普通图的结构,而且在低维嵌入空间中增强同类数据聚集性和非同类数据的远离性,提取的鉴别特征可改善地物分类精度。在PaviaU和Urban高光谱数据集上进行了分类实验,本文方法的总体分类精度分别可达到85.92%和79.74%。相比普通图嵌入和超图方法,该算法明显提升了地物的分类性能。 相似文献
4.
鉴于传统维数约减方法对高光谱遥感影像进行降维时,往往只利用了单一的光谱特征,限制了分类性能的提升。提出一种基于多特征流形鉴别嵌入的维数约减方法,该方法首先提取高光谱数据的LBP(Local Binary Patterns)纹理特征,然后利用样本点的光谱-LBP特征联合距离及类别信息构建类内图和类间图以发现高光谱影像中的鉴别流形结构,在低维嵌入空间中不仅保持来自同一像素的光谱和纹理特征的相似性,而且使同类点尽可能紧致、不同类点远离,实现空-谱联合低维鉴别特征提取,以有效提高地物分类性能。在Indian Pines和黑河高光谱遥感数据集上的实验表明,本文算法的分类精度在不同实验条件下均优于传统的维数约减方法,其分类精度可达95.05%和96.20%,在较少训练样本条件下优势更为明显,有利于实际应用。 相似文献
5.
传统的局部线性嵌入(LLE)算法需用欧氏距离度量近邻,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能反映数据间的真实空间分布,导致近邻选取不稳定。针对此问题,本文提出了相关近邻(CN)LLE(CN-LLE)和相关最近邻分类(CNN)算法。提出的算法首先利用相关系数度量数据间的近邻,实现更准确的局部重构,提取鉴别特征;然后用CNN对低维嵌入特征进行分类。在KSC和Indian Pine高光谱遥感数据集上的地物分类实验结果表明:本文提出的CN-LLE+CNN算法比LLE、LLE+CNN和CN-LLE等算法的总分类精度提升了2.11%~11.55%,Kappa系数提升了0.026~0.143。由于该算法增加了近邻为同类的概率,便于更有效地提取同类数据的鉴别特征,且有更好的稳定性,故能更有效地实现高光谱遥感数据的地物分类。 相似文献
6.
7.
多核融合多尺度特征的高光谱影像地物分类 总被引:1,自引:0,他引:1
对于高光谱影像地物分类问题,为更加有效地利用像元空间信息和光谱信息,提高地物分类精度,提出了多核融合多尺度特征的分类方法。首先,通过多尺度空间滤波和PCA白化,提取出多尺度特征;接着在核稀疏表示分类器内使用多核方式对分别表示每项特征,在分类器内实现特征自动融合,根据子核与理想核、子核之间距离求取核组合的权重,使用训练集所构成的字典在特征空间内对待测样本进行线性表示,根据每类地物的重构误差确定待测像元所属地物类别。实验结果表明:对于Indian Pines影像和Pavia University影像总体分类精度分别达到99.51%和97.96%,较传统方法明显提高,并且对于小样本地物识别精度也都能达到90%以上。本文算法对于高光谱影像地物具有更强的识别能力,并且具有较强的稳定性和鲁棒性。 相似文献
8.
基于多尺度分割的高光谱图像稀疏表示与分类 总被引:3,自引:0,他引:3
针对高光谱特征的稀疏表示,提出了一种基于多尺度分割的空间加权算法用于高光谱图像分类。该算法采用更合理的邻域定义挖掘空间先验信息,优化类边缘像元的稀疏表示。首先,通过多尺度分割提供邻域空间约束;结合拉普拉斯尺度混合(LSM)先验,分别对每个邻域组内像元进行空间加权的稀疏表示。然后,采用概率支持向量机(SVM)分类,同时提供像元的分类标签及其置信度。最后,以此置信度为权重,对多尺度分类图进行加权融合,生成最终的分类图。实验显示,本文算法能够增强光谱特征表示的稀疏性和鲁棒性,提高总体分类精度;在小样本训练下,单类的分类精度可提升30%左右,表明该算法在高光谱应用中具有较强的实用性。 相似文献
9.
《光学精密工程》2021,29(8)
鉴于传统深度学习方法只提取了高光谱图像中的深度抽象信息,而未能充分揭示样本之间的局部几何结构关系,限制了分类性能的提升,本文提出了一种新的特征提取网络——深度流形重构置信网络。该网络首先通过深度置信网络提取深度抽象特征,为进一步增强抽象特征的鉴别能力,在图嵌入框架下通过样本数据的邻域点和各邻域的同类近邻重构点来构建类内图和类间图,并在低维空间中分离类间近邻点与其重构点的同时压缩类内近邻点和相应的重构点,实现提取深度鉴别特征,以改善不同类数据的可分性,进而提升地物分类精度。在KSC和MUUFL Gulfport高光谱数据集上的实验结果表明,本文算法的总体分类精度分别达到了94.71%和86.38%。相比较其他算法,本文算法有效提升了地物分类能力,更有利于实际应用。 相似文献
10.
鉴于传统高光谱影像分类大都采用监督学习方法,且仅利用了光谱信息,未考虑影像空间特征和流形结构。提出一种基于空-谱协同流形重构误差的高光谱影像分类方法,该算法基于高光谱影像中地物分布的空间一致性,利用少量标记的样本和大量的无标记空间近邻样本来进行半监督学习,并利用测试样本在每一子流形上的重构误差来表征相似性,实现鉴别分类。在Indian Pines和University of Pavia数据集上的实验结果表明,本文方法的分类精度在各种条件下要优于其他分类算法,其最高总体精度分别达到了95.67%和91.92%。该算法将高光谱遥感影像中的空间-光谱信息融入不同地物的子流形结构表征,在训练样本数量较少时仍能得到好的分类效果,有效提升了分类性能。 相似文献
11.
基于卷积神经网络的光学遥感图像检索 总被引:3,自引:0,他引:3
提出了一种基于深度卷积神经网络的光学遥感图像检索方法。首先,通过多层卷积神经网络对遥感图像进行卷积和池化处理,得到每幅图像的特征图,抽取高层特征构建图像特征库;在此过程中使用特征图完成网络模型参数和Softmax分类器的训练。然后,借助Softmax分类器在图像检索阶段对查询图像引入类别反馈,提高图像检索准确度,并根据查询图像特征和图像特征库中特征向量之间的距离,按相似程度由大到小进行排序,得到最终的检索结果。在高分辨率遥感图像数据库中进行了实验,结果显示:针对水体、植被、建筑、农田、裸地等5类图像的平均检索准确度约98.4%,增加飞机、舰船后7类遥感图像的平均检索准确度约95.9%;类别信息的引入有效提高了遥感图像的检索速度和准确度,检索时间减少了约17.6%;与颜色、纹理、词袋模型的对比实验表明,利用深度卷积神经网络抽取的高层信息能够更好地描述图像内容。实验表明该方法能够有效提高光学遥感图像的检索速度和准确度。 相似文献
12.
针对传统的基于特征提取的高光谱图像地物分类算法大多只考虑光谱信息而忽略空间信息的问题,提出了一种面向高光谱分类的半监督空谱全局与局部判别分析(S3 GLDA)算法。该算法首先利用少量标记样本保存数据集的线性可分性和全局判别信息,再依靠较多的无标记的空间局部近邻像元来揭示局部判别信息和非线性局部流形,使高光谱遥感图像的光谱域全局判别结构和空间域局部判别结构在低维特征空间同时得以保留,并在输出特征中自动融入了空间信息,构成了半监督的空谱判别分析。在Indian Pines和PaviaU数据集的实验表明,总体分类精度分别达到76.24%和82.96%。与现有几种算法比较,该算法有效提高了输出特征在低维空间的判别能力,更好地揭示了数据集的内在非线性多模本质,有效提升了高光谱图像数据集的地物分类精度。 相似文献
13.
在遥感影像研究领域里,高光谱数据分类是一个热点问题。近年来,在这个问题上涌现出很多研究方法,然而,大多数方法都是用浅层的方法提取原始数据的特征。将深度学习的方法引入高光谱图像分类中,提出一种新的基于深信度网络(DBN)的特征提取方法和图像分类架构用于高光谱数据分析。将谱域-空域特征提取和分类器相结合提高分类精度。使用高光谱数据进行实验,结果表明该分类器优于当前的一些先进的分类方法。此外,本文还揭示了深度学习系统在高光谱图像分类研究中具有的巨大潜力。 相似文献
14.
15.
Curvelet变换是继小波变换之后,更适合图像处理的一种新的多尺度变换分析方法,相比小波而言,它更加适合分析二维图像中的曲线或直线状边缘特征,而且具有更高的逼近精度和更好的稀疏表达能力,同时也具有很强的方向性.本文论述了Curvelet变换的理论和实现算法,基于考虑图像中的那些弱的边缘,提出了一种利用Curvelet变换进行遥感图像融合的方法.实验结果分析表明:将Curvelet变换引入图像融合,能够更好地提取原始图像特征,为融合图像提供更多信息,使融合图像在较好地保留光谱信息的同时,空间细节信息得到增强,优于典型的IHS变换、主分量变换及小波变换图像合方法. 相似文献
16.
局部正交子空间投影高光谱图像异常检测算法 总被引:1,自引:0,他引:1
正交子空间投影是一种监督分类算法,需要已知待分类目标的特征信息。为了扩展该算法的应用场合,提出局部正交子空间投影算法,并成功应用于高光谱图像异常检测。异常检测常用于自然背景下的人工目标提取,在小范围邻域内地物类型相对单一。基于此,以被检测点作为感兴趣目标、被检测点邻域内样本均值作为不感兴趣目标,构造局部投影算子。实验结果表明:能够检测出含量高于30%的亚像元目标;可通过适当增大滑动窗尺寸,检测像元面积较大的目标;不受Hughes效应影响;当波段数为80时,运算时间低于RX算法的十分之一。局部正交子空间投影算法检测精度高、运算速度快,适用于实时高光谱图像异常检测。 相似文献
17.
为了解决遥感图像场景分类中因样本量小而分类精度不高的问题,提出了一种基于多尺度特征融合(MSFF)的分类方法。首先,对遥感图像进行尺度变换,得到同一遥感源图像的多个不同尺度图像。接着,将其分别输入深度卷积神经网络(DCNN)中进行卷积操作。然后,将各卷积层和全连接层提取出的不同尺度特征进行降维和编码/平均池化操作。最后,将各尺度特征进行编码融合并利用多核支持向量机(MKSVM)进行场景分类。在两个公开遥感图像数据集UCM Land-Use和NWPU-RESISC45中进行试验,分类精度最高分别达到98.91%和99.33%。本文方法能够利用不同尺度的图像特征,结合低、中、高层语义表示,使融合特征的可辨识性更高,同时使用多核支持向量机提高了深度网络学习的泛化能力,因此分类效果更好。 相似文献