首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 88 毫秒
1.
谱线弯曲对成像光谱仪辐射信号采集的影响   总被引:2,自引:0,他引:2  
为了研究谱线弯曲对棱镜色散成像光谱仪光谱辐射信号采集的影响。首先,给出探测器像元采集到的辐射能量的表达式。然后,结合复合棱镜的色散特性,在可见近红外光谱范围(400~1000nm)内,计算当光谱偏离量为0.01d、0.1d和0.5d(d为探测器像元尺寸)时系统采集到的辐射能量与没有谱线弯曲情况下系统采集到的辐射能量的归一化差值,衡量谱线弯曲下系统辐射测量的变化。结果表明:谱线弯曲引起的探测器上的光谱偏离导致系统辐射信号采集发生变化,与没有谱线弯曲的情况相比,采集到的景物辐射信号在大气吸收带的边缘出现明显的偏差,且信号的差值随光谱偏离量的增大而增大,当光谱分辨率提高时,一些较弱的吸收峰附近也会出现明显的信号偏差。对于光谱分辨率平均为10nm的成像光谱仪,谱线弯曲量应控制在0.3nm以内。  相似文献   

2.
根据宽视场大相对孔径成像光谱仪的应用要求和技术指标,采用离轴Schwarzschild望远成像系统和双Schwarzschild光谱成像系统匹配的结构型式,设计了一个视场为28°、相对孔径为1/2.5、工作波段为0.4~1μm的机载成像光谱仪光学系统;根据双Schwarzschild光谱成像系统的像散校正条件计算了初始结构参数。然后,利用光学设计软件ZEMAX-EE进行了光线追迹和优化设计,并对设计结果进行了分析与评价。结果显示:光谱成像系统中心波长和边缘波长88%以上的能量集中在一个探测器像元内;谱线弯曲和谱带弯曲均小于像元的5%,便于光谱和辐射定标;成像光谱仪全系统在各个波长的光学传递函数均达到0.59以上,完全满足设计指标要求。该成像系统体积小、重量轻,非常适合航空遥感应用。  相似文献   

3.
为了实现超宽谱段与高分辨率特点兼具的中阶梯光栅光谱仪系统,提出了一种光路结构设计,并针对其深紫外波段的有效探测方法进行了研究及验证.该光路结构结合准Littrow结构与C-T结构的优势,保证了色散光路具备高衍射效率,同时很好地抑制了杂散光.在有限可选光学材料下,采用多重评价优化方式获得中阶梯光栅光谱仪的光学结构参数.通...  相似文献   

4.
针对成像光谱仪通过狭缝进行线视场成像时存在的孔径较小、光学透过率较低等问题,研究了一种基于棱镜-光栅型分光结构的大孔径面视场成像光谱仪。该棱镜-光栅成像光谱仪采用表面浮雕型透射光栅,极大地降低了光栅的制作难度与成本。大孔径面视场的成像光谱仪相较于线视场成像光谱仪有较高光学效率和时间效率。但是面视场成像光谱仪的色畸变与谱线弯曲较难校正。本文将前端望远系统与分光系统进行一体化设计,满足远心光路匹配和孔径匹配,较好地校正了面视场光谱成像系统中的谱线弯曲和色畸变。并且通过加入非球面反射镜及校正镜很好的校正了由于大孔径面视场所引入的非对称性离轴像差。结果表明,设计的大孔径面视场PG成像光谱仪光谱波段范围400~1 000nm,光学调制传递函数达到0.65以上,光谱分辨率达2.5nm,全谱段不同视场的谱线弯曲小于5μm,色畸变小于8μm。  相似文献   

5.
6.
为了实现对太阳中红外光谱CO 4.66μm波段的观测,设计了一台光谱中心波长为4.667μm的高分辨中红外光谱仪。基于科学观测需求分析了光谱仪的技术指标,为降低红外仪器的背景辐射,光谱仪整体置于真空制冷环境中;为达到高分辨率的观测需求,采用中阶梯光栅作为分光器件;为获得更优的像质,同时达到压缩光路的目的,光谱仪采用李特洛结构与离轴三反消像散技术相结合的光学设计,离轴三反同时承担了光谱仪中准直和成像的功能。在同轴三反系统的几何光学成像理论的基础上,研究了同轴三反结构、离轴三反结构以及光谱仪结构的求解和设计优化方法。光谱仪的焦距为1 300 mm,数值孔径为0.035,视场为20.3'×0.158',系统的整体尺寸小于700 mm。结果表明,在工作波段范围内,光谱仪点列图的均方根直径小于5μm,能量集中于一个像元尺寸范围内,光谱仪系统设计结果满足要求。  相似文献   

7.
中阶梯光栅光谱仪的光学设计   总被引:1,自引:4,他引:1  
为了在更宽波段范围内获得较高的分辨率,实现全谱直读,对中阶梯光栅光谱仪进行了研究。简述了中阶梯光栅及中阶梯光栅光谱仪的基本原理,分析并比较了这种光谱仪与普通平面闪耀光栅光谱仪的区别。利用光学成像原理与消像差理论设计了Czerney-Turner结构形式的中型高分辨率中阶梯光栅光谱仪原理样机的光学系统。该光学系统工作在原子谱线最为密集的200~500nm波长处;为简化计算,在设计中消除了350nm波长的所有像差;光线对中阶梯光栅在准Littrow条件下入射,以获得高衍射效率;使用折反射棱镜作为交叉色散元件来分离重叠的级次,在CCD探测器上获得了二维光谱面。该光学系统有较好的平场特性及点对点成像能力,在整个工作波长分辨率可达到2000~15000,满足设计要求。该仪器可用于原子发射和吸收光谱的研究工作,通过替换不同的探测器及增加外围电路与软件平台,仪器的工作性能可进一步提高。  相似文献   

8.
为了满足高分辨率大相对孔径宽波段高光谱成像仪的要求,提出并设计了一种基于双Schwarzschild结构的平面光栅光谱仪。基于几何像差理论,推导出了像散校正条件,利用Matlab软件编制了初始结构参数快速计算程序。作为实例,设计了一个相对孔径为1/2.5,波段为350~1 000 nm的平面光栅光谱仪光学系统。利用自己编制的Matlab程序计算了初始结构参数,然后利用光学设计软件ZEMAX-EE对该光谱仪的光学系统进行了光线追迹和优化设计,并对设计结果进行分析。结果表明,在整个工作波段(350~1 000 nm)内,点列图半径均方根值小于8.2 μm,实现了大相对孔径宽波段像散同时校正,在宽波段内同时获得了良好的成像质量,满足了设计指标要求。所提出的基于双Schwarzschild结构的平面光栅光谱仪在高光谱遥感领域很有应用前景。  相似文献   

9.
高分辨率阶梯光栅光谱仪的光学设计   总被引:6,自引:5,他引:6  
简述阶梯光栅的基本原理和在天文学中的应用,分析并比较了阶梯光栅光谱仪与普通平面闪耀光栅光谱仪的区别。为正在研制中的一架国产4m通光口径的光谱巡天望远镜(简称LAMOST)设计了高分辨率阶梯光栅光谱仪的光学方案,该设计方案采用了白光孔径准直镜系统,大闪耀角的R4阶梯光栅和无遮拦的离轴折叠Schmidt照相机。  相似文献   

10.
介绍了机载或小卫星载水色成像光谱仪的设计考虑,并列出以分色镜和棱镜分光相结合可实现从可见光亚热红外11个波段探测的设计结果。  相似文献   

11.
改进的宽谱段车尔尼-特纳光谱成像系统设计   总被引:2,自引:1,他引:2  
针对传统的车尔尼-特纳光谱仪像散较大的缺点,基于像差理论,提出了一种改进的车尔尼-特纳光谱成像系统.将平面光栅置于发散光中,利用平面光栅产生的像散来补偿物镜产生的像散.推导出了宽谱段像散同时校正条件,实现了宽谱段像散的同时校正.具体分析了像差校正的原理和方法,编制了初始结构快速计算程序.作为实例,设计了一个谱段为540~780 nm的宽谱段像散同时校正车尔尼-特纳光谱成像系统,利用光学设计软件ZEMAX-EE对该光谱成像系统进行了光线追迹和优化设计,并对设计结果进行了分析.结果表明,全视场调制传递函数在整个工作波段均达到0.52以上,实现了宽谱段像散的同时校正,并获得了良好的成像质量,满足了设计指标要求,结果也证实了所提出的改进方法是可行的.  相似文献   

12.
大相对孔径宽波段Dyson光谱成像系统   总被引:1,自引:0,他引:1  
提出了一种改进型Dyson光谱成像系统,以克服传统Dyson光谱成像系统焦平面探测器安置困难的缺点.首先,基于折射球面罗兰圆理论,提出了这种改进型Dyson光谱成像系统的光学设计方法.然后,利用MATLAB软件编制了初始结构参数快速计算程序.作为实例,设计了一个相对孔径为1/2,波段为200~1 000 nm的Dyson光谱成像系统.利用自己编制的MATLAB程序计算了初始结构参数,利用光学设计软件ZEMAX-EE对该光谱成像系统进行了光线追迹和优化设计,并对设计结果进行分析.分析结果表明,在整个工作波段(200~1 000 nm)内,点列图半径均方根值小于4.2 μm,实现了大相对孔径宽波段像散同时校正,在宽波段内同时获得了良好的成像质量,满足设计指标要求.得到的结果验证了所提出的光学设计方法是可行的.  相似文献   

13.
为提高成像光谱仪的工作波长范围,提出了基于双波段焦平面探测器(FPAs)的双衍射级次全共路Offner成像光谱仪结构。该结构中凸面光栅的一级衍射光和二级衍射光完全重叠共路传输,并可由焦平面处的双波段红外焦平面探测器IR FPAs实现级次的自然分离和同时探测。分析了该结构的工作原理和设计方法,基于几何光线追迹法仿真了谱线弯曲和色畸变特性,基于Huygens点扩散函数(PSF)仿真了光谱响应函数(SRF)并导出了光谱带宽。实验显示:双衍射级次共路Offner成像光谱仪的工作波段为3~6μm(二级衍射)和6~12μm(一级衍射),谱线弯曲和色畸变均小于0.5个像元宽度,光谱带宽分别为13.2~14.3nm(二级衍射)和28.3~33.3nm(一级衍射),两个工作波段内的衍射效率均大于或等于20%。整个系统结构简单紧凑、光谱范围宽,满足对地物或深空目标的中等分辨率的中远红外光谱探测需求。  相似文献   

14.
凸面光栅成像光谱仪的研制与应用   总被引:4,自引:2,他引:4  
考虑传统光栅成像光谱仪受光学畸变的限制难以同时实现大光学孔径和小型化要求,利用全息法设计并制作了凸面光栅,并以该凸面光栅作为核心元件研制了便携式成像光谱仪。该光谱仪以推扫方式进行目标扫描,获取成像光谱数据立方。仪器的光谱分辨率为2.4 nm,光谱谱线弯曲为0.1%,色畸变为0.6%,体积为209 mm×199 mm×110 mm。介绍了仪器的工作原理和结构设计,并进行了实验室检测和室外花卉实际光谱测量。测试结果表明:凸面光栅成像光谱仪的光谱分辨率为2.1 nm,光谱谱线弯曲为0.09%,色畸变为0.6%,均满足设计要求,实际花卉光谱测试亦取得了较为理想的结果。  相似文献   

15.
针对Offner双镜三反射成像光谱仪的消像差结构,采用几何方法推导出光谱分辨率的计算公式,分析了入射狭缝的宽度、凸面光栅分辨率、系统像差和探测器像元尺寸各个参数对光谱分辨率的影响,提出了分光系统像差的计算方法和优化设计方法,并探讨了提高光谱分辨率的方法和技术,即在优化系统像差的同时,适当减小狭缝宽度和探测器像元尺寸,有利于提高系统的光谱分辨率。该系统利用消像差优化设计同时考虑光谱分辨率的设计方法,具有十分重要的实用价值,为成像光谱仪的研制提供经验和借鉴。  相似文献   

16.
用于大气遥感探测的临边成像光谱仪   总被引:5,自引:3,他引:5  
分析了大气临边成像光谱探测的原理,依据应用要求设计研制了光栅色散型紫外/可见临边成像光谱仪原理样机。该样机采用宽波段折射式消色差前置望远光学系统与改进的Czerny-Turner光谱成像系统匹配的结构形式,工作波段为540~800nm(一级光谱)和270~400nm(二级光谱),通过切换紫外、可见带通滤光片来实现两个波段分别探测,质量为8kg,体积为450mm×250mm×200mm。用该样机进行了实验室光谱实验,并对光谱分辨率进行了分析,测量了该样机的实际光谱分辨率。测量结果表明,该样机的实际光谱分辨率为1.3nm,接近其理论光谱分辨率1.12nm,满足设计指标1.4nm的要求,并具有体积小、质量轻等特点,适合空间遥感应用。  相似文献   

17.
为了能对自主研制的脑肿瘤手术医用显微成像光谱仪进行光谱定标,设计了由单色仪、钨灯光源、棱镜-光栅-棱镜成像光谱仪及手术显微平台组成的光谱定标系统。采用单色仪波长扫描法,自主开发了相应的光谱定标系统软件,获得了显微成像光谱仪全谱段的光谱数据,完成了数据处理和分析等工作。通过调整光路、单色仪定标、成像光谱仪定标3个步骤实现了系统的光谱定标。定标结果表明:显微成像光谱仪的光谱区大于400~900nm;定标精度高于0.1nm,光谱分辨率高于3nm,各项特征指标均高于设计指标。测试验证实验表明,所建立的光谱定标系统定标精准,结构简单、紧凑,操作简单,符合显微成像光谱仪的实际临床应用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号