共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
基于CUDA的并行粒子群优化算法的设计与实现 总被引:1,自引:0,他引:1
针对处理大量数据和求解大规模复杂问题时粒子群优化(PSO)算法计算时间过长的问题, 进行了在显卡(GPU)上实现细粒度并行粒子群算法的研究。通过对传统PSO算法的分析, 结合目前被广泛使用的基于GPU的并行计算技术, 设计实现了一种并行PSO方法。本方法的执行基于统一计算架构(CUDA), 使用大量的GPU线程并行处理各个粒子的搜索过程来加速整个粒子群的收敛速度。程序充分使用CUDA自带的各种数学计算库, 从而保证了程序的稳定性和易写性。通过对多个基准优化测试函数的求解证明, 相对于基于CPU的串行计算方法, 在求解收敛性一致的前提下, 基于CUDA架构的并行PSO求解方法可以取得高达90倍的计算加速比。 相似文献
3.
4.
为了对任意长的明/密文进行并行加密/解密,在分析了AES(Advanced Encryption Standard)的多种模式后,采用了最合适的CTR(Counter)模式设计和实现了GPU(Graphics Processing Unit)并行AES算法,并进行了优化.针对Nvidia Geforce GTX460平台理论分析了CTR模式的并行AES算法和串行AES算法的时间复杂度,得到综合的加速比为31.59,然后在Nvidia Geforce GTX 460平台上实验运行,结果显示CTR模式的AES-256的GPU并行算法相对串行CTR模式的AES算法,实验加速比跟理论加速比基本吻合.在此基础上,对CTR模式的AES-256进行了优化.实验结果显示,优化的CTR模式的AES-256并行算法在加速比上随着明文的增大提升的比例渐渐减少并趋于稳定.优化的CTR模式的AES算法加密数据量小的明文时,其优化效果更为明显,故能有效地提升SSL(Secure Socket Layer,其明文区间为35KB-150KB)的加密性能. 相似文献
5.
6.
7.
针对目前图像处理算法日益复杂,对CPU的性能要求越来越高,而传统的基于CPU的图像处理方法无法满足需求的情况,本文对基于统一计算设备架构(CUDA)的图形处理器(GPU)在图形处理方面的算法进行研究和实现。通过充分利用GPU突出的并行处理能力,采用CUDA技术,利用C++语言实现相关算法。研究并设计高斯模糊处理算法、彩色负片处理算法、透明合并处理算法的GPU并行运算流程,并通过与CPU实现相同效果的性能的对比,证明基于GPU图像处理算法的高效性。 相似文献
8.
针对粒子群优化(PSO)算法训练人工神经网络(NN)时面临的计算时间过长问题,引入基于图形处理器(GPU)技术的并行处理解决方法。使用粒子与线程一一对应的并行策略,通过并行处理各个粒子的计算过程来加快整个粒子群的收敛速度,减少粒子群神经网络(PSO-NN)的训练时间。在统一计算设备架构(CUDA)下对一简单测试函数逼近的数值进行仿真,实验结果表明,相较基于CPU的串行PSO-NN,基于GPU的并行PSO-NN在寻优稳定性一致的前提下取得了超过500倍的计算加速比。 相似文献
9.
针对传统谱聚类算法没有解决簇划分过程中,簇间交叉区域样本点对聚类效果有影响这个问题,提出一种基于局部协方差矩阵的谱聚类算法,主要介绍了一种新的计算样本之间相似度亲和矩阵的方法,即通过计算样本点之间的欧氏距离划分出小子集,计算小子集的协方差,通过设定阈值剔除交叉点,由剩下的点构造相似矩阵,对相似矩阵进行特征值分解,用经典的[k]-means算法对由特征向量组成的矩阵聚类。通过在Control等真实数据集上的实验结果表明,该算法在聚类准确率、标准互信息等指标上比较对比算法获得更优秀的效果。 相似文献
10.
11.
直方图生成算法(Histogram Generation)是一种顺序的非规则数据依赖的循环运算,已在许多领域被广泛应用。但是,由于非规则的内存访问,使得多线程对共享内存访问会产生很多存储体冲突(Bank Conflict),从而阻碍并行效率。如何在并行处理器平台,特别是当前最先进的图像处理单元(Graphic Processing Unit,GPU)实现高效的直方图生成算法是很有研究价值的。为了减少直方图生成过程中的存储体冲突,通过内存填充技术,将多线程的共享内存访问均匀地分散到各个存储体,可以大幅减少直方图生成算法在GPU上的内存访问延时。同时,通过提出有效可靠的近似最优配置搜索模型,可以指导用户配置GPU执行参数,以获得更高的性能。经实验验证,在实际应用中,改良后的算法比原有算法性能提高了42%~88%。 相似文献
12.
由于GPU(图形处理器)性能的大幅提高和可编程性的发展,基于GPU的光线追踪算法逐渐成为研究热点。光线追踪算法需要的计算量大,基于此,分析了光线追踪算法的基本原理,在NVIDIA公司的CUDA(计算统一设备体系结构)环境下采用均匀栅格法作为加速结构实现了光线追踪算法。实验结果表明,该计算模式相对于传统基于CPU的光线追踪算法具有更快的整体运算速度,GPU适合处理高密度数据计算。 相似文献
13.
利用GPU的强大浮点数计算能力和并行处理能力,提出一种完全基于GPU的视点相关自适应细分内核进行快速细分计算的方法.在GPU中,依次实现视点相关的面片细分深度值计算、基于基函数表的细分表面顶点求值、细分表面绘制等核心步骤,无须与CPU端系统内存进行几何数据交换.视点相关的自适应细分准则在表面绘制精度保持不变的情况下,有效地降低了细分表面的细分深度和细分的计算量,在此基础上完全基于GPU的细分框架使得曲面细分具有快速高效的特点.该方法还可以在局部重要细节用较大深度值进行实时自适应细分,以逼近极限曲面. 相似文献
14.
针对GPU图形处理的特点,分析其应用于通用计算的并行处理机制和数据映射,提出了一种GPU通用计算模式的映射机制和一般性设计方法,并针对GPU的吞吐量、数据流处理能力和基本数学运算能力等进行性能测试,为GPU通用计算的算法设计、实现和性能优化提供参考依据。 相似文献
15.
This paper introduces how to optimize a practical prestack Kirchhoff time migration program by the Compute Unified Device Architecture (CUDA) on a general purpose GPU (GPGPU). A few useful optimization methods on GPGPU are demonstrated, such as how to increase the kernel thread numbers on GPU cores, and how to utilize the memory streams to overlap GPU kernel execution time, etc. The floating-point errors on CUDA and NVidia's GPUs are discussed in detail. Some effective methods that can be used to reduce the floating-point errors are introduced. The images generated by the practical prestack Kirchhoff time migration programs for the same real-world seismic data inputs on CPU and GPU are demonstrated. The final GPGPU approach on NVidia GTX 260 is more than 17 times faster than its original CPU version on Intel's P4 3.0G. 相似文献
16.
17.
目的 近年来双目视觉领域的研究重点逐步转而关注其“实时化”策略的研究,而立体代价聚合是双目视觉中最为复杂且最为耗时的步骤,为此,提出一种基于GPU通用计算(GPGPU)技术的近实时双目立体代价聚合算法。方法 选用一种匹配精度接近于全局匹配算法的局部算法——线性立体匹配算法(linear stereo matching)作为代价聚合策略;结合线性代价聚合的原理,对其主要步骤(代价计算、均值滤波及系数求解等)的计算流程进行有针对性地并行优化。结果 对于相同的实验样本,用本文方法在NVIDA GTX780 实验平台上能在更短的时间计算出代价矩阵,与原有的CPU实现方法相比,代价聚合的效率平均有了数十倍的提升。结论 实时双目立体代价聚合方法,为在个人通用PC平台上实时获取高质量双目视觉深度信息提供了一个高效可靠的途径。 相似文献
18.
稀疏矩阵与向量乘(SpMV)属于科学计算和工程应用中的一种基本运算,其高性能实现与优化是计算科学的研究热点之一。在微分方程的求解过程中会产生大规模的稀疏矩阵,而且很大一部分是一种准对角矩阵。针对准对角矩阵存在的一些不规则性,提出一种混合对角存储(DIA)和行压缩存储(CSR)格式来进行SpMV计算,对于分割出来的对角线区域之外的离散非零元素采用CSR存储,这样能够克服DIA在不规则情况下存储矩阵的列迅速增加的缺陷,同时对角线采用DIA存储又能充分利用矩阵的对角特征,以减少CSR的行非零元素数目的不均衡现象,并可以通过调整存储对角线的带宽来适应准对角矩阵的不同的离散形式,以获得比DIA和CSR更高的压缩比,减小计算的数据规模。利用CUDA平台在GPU上进行了实验测试,结果表明该方法比DIA和CSR具有更高的加速比。 相似文献