首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel technique for particle tracking in 2-dimensional fluidized beds operated under ambient conditions. The method is applied to study the mixing mechanisms of fuel particles in fluidized beds and is based on tracking a phosphorescent tracer particle by means of video recording with subsequent digital image analysis. From this, concentration, velocity and dispersion fields of the tracer particle can be obtained with high accuracy. Although the method is restricted to 2-dimensional, it can be applied under flow conditions qualitatively resembling a fluidized-bed combustor. Thus, the experiments cover ranges of bed heights, gas velocities and fuel-to-bed material density and size ratios typical for fluidized-bed combustors. Also, several fluidization regimes (bubbling, turbulent, circulating and pneumatic) are included in the runs.A pattern found in all runs is that the mixing pattern of the tracer (fuel) solids is structured in horizontally aligned vortexes induced by the bubble flow. The main bubble paths always give a low concentration of tracer solids and with the tracer moving upwards, while the downflow of tracer particles in the dense bottom bed is found to take place in zones with low bubble density and at the sidewalls. The amount of bed material (bed height) has a strong influence on the bottom bed dynamics (development and coalescence of bubbles) and, consequently, on the solids mixing process. Local dispersion coefficients reach maximum values around the locations of bubble eruptions, while, in the presence of a dense bottom bed, an increase in fluidization velocity or amount of bed material enhances dispersion. Dispersion is found to be larger in the vertical than in the horizontal direction, confirming the critical character of lateral fuel dispersion in fluidized-bed combustors of large cross section.  相似文献   

2.
Axial mixing of solids in a 19.3 cm diameter bed was investigated using a tracer technique. Bed material and tracer consisted of ion-exchange resin particles of 0.846 mm and 0.645 mm diameter, respectively. Tracer concentration profiles were measured. The results were expressed as axial dispersion coefficients. An equation relating dispersion coefficient to superficial gas velocity is presented.  相似文献   

3.
The solids mixing in a riser with a height of 10 m and 0.186 m inner diameter was investigated by using pneumatic phosphor tracer technique. Considering the shielding effect of the bed material on the light emitted from the phosphor tracer particle, a modified method for the phosphor tracer measurement is proposed. And then the curves of particle residence time distribution were obtained. The experimental results show that the particle diffusion mechanism can be explained by the dispersions of dispersed particles and particle clusters in the axial direction, and as well the core-annulus nonuniform distribution of the solids fraction in the radial direction of the riser. Moreover, based on the experimental results, a two-dimensional dispersion model was established to predict the solids axial and radial diffusion. Furthermore, the effects of superficial gas velocity and solids circulating flux on the axial and radial Peclet number of the particles were discussed; two empirical correlation formulas about the axial and the radial Peclet numbers were given; the calculated values agree well with the experimental results.  相似文献   

4.
A 0.27 m diameter fluidized bed reactor has been designed to allow experimental measurement of the axial and radial mixing behaviour of the solids. A unique method has been developed which permits the continuous determination of solid tracer concentration with time at different radial and axial positions within the fluidized bed. Solids mixing has been described by a model in which vertical mixing is instantaneous and lateral mixing occurs by dispersion. The lateral solids dispersion coefficients have been evaluated at various operating conditions from the experimental results of tracer concentration versus time. Based on the results, a modification of an existing correlation is proposed.  相似文献   

5.
The axial pressure drop profile and the radial solids distribution were measured in a circulating fluidized bed for evaluating the effects of return gas-solids stream position on the riser flow properties.The saturation carrying capacity of gas for Geldart B typed particles and the flow mode of return gas-solids stream in the bed were discussed.It was found that arranging the inlet at a higher position of the riser would make the bottom bed leaner when U0 was high and Gs was low.When Gs increased,the longer influenced region of return particles and a small air-staging through lifting the loosening air injection position made the bottom bed become denser significantly.The deceleration and residence of return particles caused a relatively denser but asymmetrical region in the vicinity of inlet.But much more symmetrical solids distribution profile was found in the upper and lower regions far away from the inlet.The effects of inlet height on the flow properties of the riser with air-staging also were analyzed.The secondary air injection below the solids inlet could not cut off the solids exchange in the bed.The bed solids concentration increased when the particles inlet moved to a higher position of the bed when air-staging was adopted.Using CO2 as tracer,the dispersion of the loop-seal-fluidizing air for transmitting the return particles was investigated.It was found that the loop-seal fluidizing air dispersion rate was low but can be enhanced by the secondary air injection.  相似文献   

6.
In a rectangular fluidized bed combustor,the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate.In this study,a general governing equation is formulated for tracer gas dispersion in the bed.An analytical solution is derived to estimate the dispersion coefficients,Dx and Dy,in a horizontal plane.The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently,to estimate the dispersion coefficients,surface fitting of the obtained analytical solution to the experimental data is performed.The dispersion coefficients obtained from this model are compared with those of a conventional model.Additionally,the effect of walls,bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated,and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions.It is found that Dx and Dy are nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate.It is also demonstrated that the effect of bed height on Dx is minor.This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.  相似文献   

7.
In this study, the behavior of gas dispersion in a bubbling fluidized bed was investigated. Carbon dioxide was used as the tracer gas. Most of the gas jets from tuyeres are towards the same direction, parallel with the longitudinal axis. The movement of particles in the lateral direction was enhanced by the momentum of horizontal gas jets within the bed.The experimental results show that the effect of superficial gas velocity on the gas mixing depends on the distributor type. Comparing with perforated distributor, a better performance of gas mixing was observed while the bed was equipped with horizontal nozzle distributor.  相似文献   

8.
林诚  张济宇 《化工学报》2003,54(8):1072-1077
针对作者开发的带有导管与多层百叶窗式挡板特殊构型的三相流化床反应器, 实验考察了百叶窗式挡板层数与挡板倾角构型参数、气体与浆液流量操作参数对床内固体颗粒轴向浓度分布及粒度分布的影响.实验结果表明, 百叶窗式挡板的层数是影响固体颗粒轴向浓度分布及粒度分布的主要因素,当百叶窗层数多于15层时, 挡板上下方分区明显.并就挡板影响颗粒分布的可能机制进行了分析讨论.  相似文献   

9.
The gas mixing in the radial direction within a fluidized bed equipped with a multi‐horizontal nozzle distributor was studied using response surface methodology (RSM), which enables the examination of parameters with a moderate number of experiments. All experiments were carried out in a circular fluidized bed of 0.29 m I.D. cold model fluidized bed. The distributor is placed beside twenty‐two horizontal nozzles that are arranged in three concentric circles with all existing discharge directed clockwise. The tracer gas (CO2) was discharged into the bed as a tracer gas and the analysis was performed with a gas chromatograph. In order to compare the different internal circulations, the tracer gas was discharged in the center area or annular area of the bed. In RSM, the static bed height, superficial velocity and the open area ratio of the distributor are chosen as the research variables, and the standard deviation of the time averaged radial tracer concentration is used as the objection function. A mathematical model for the gas mixing as a function of the operating parameters was empirically proposed. The results show that the standard deviation of time averaged radial tracer concentration is well correlated with the operating and geometry parameters, (UUmf)/Umf, Hs/D and ψd, and that the tracer gas injected to the center position has a better dispersion than when injected to the annular position. This model can be used for optimizing the design of fluidized bed reactors at a required performance level.  相似文献   

10.
Solid tracer particles were fed pneumatically through a jet into a fluidized bed to simulate the feeding of solids via a pneumatic transport line into a fluidized-bed reactor operating in the slugging-bed mode. The fluidized bed was defluidized instantaneously at different times after the initiation of the tracer particle injection. The bed was then sampled layer by layer to provide the radial and axial concentration profiles of the tracer. Regular and high-speed movies (1,000 frames per second) were taken to study the operation of the fluidized bed and the phenomena of the gas-solid two-phase jet. Experimental results on solid mixing, jet constriction and slugging frequencies, slugging bed height, slug length, jet penetration, and jet half-angle at three nominal jet velocities of 52, 37, and 25 m/s and corresponding solids loadings are presented. Additional experimental results on jet constriction and slugging frequencies, and slug volume (axial slug size) obtained for a wider range of jet velocities confirm the hydrodynamic trends observed during the tracer particle injection experiments. The results indicate that solids mixing increases, and well-mixed conditions are reached earlier, with an increase in jet injection velocity. The obtained mixing times were correlated successfully in terms of the excess gas velocity. The experimental data on jet penetration and slug motion were satisfactorily correlated by modified versions of existing theoretical relations. The modifications included the effect of the injected solids on jet penetration and jet half-angle and also the effect of our semicircular column geometry and single wall-slug configuration on the observed slug motion.  相似文献   

11.
A bed of particulate solids supported by an upward current of gas can be stirred at moderate power input per unit volume using thin horizontal rods mounted on a vertical shaft. The bed is fluidized, but bubbles are suppressed below a critical value of the fluidizing velocity. Stirring increases bed bulk density and reduces the minimum fluidizing velocity. Segregation in a stirred fluidized bed is enhanced with both flotsam and jetsam tracer particles, but the rate of segregation is reduced with flotsam tracers. The stirred fluidized bed may be useful as a device for dry separation of solids.  相似文献   

12.
This paper gives experimental measurements of the particle residence time distribution (RTD) made in the riser of a square cross section, cold model, circulating fluidised bed, using the fast response particle RTD technique developed by Harris et al. (Chem. Eng. J. 89 (2002a) 127). This technique depends upon all particles having phosphorescent properties. A small proportion of the particles become tracers when activated by a flash of light at the riser entry; the concentration of these phosphorescent particles can subsequently be detected by a photomultiplier. The influence of the solids circulation rate and superficial gas velocity on the RTD were investigated. The results presented are novel because (i) the experiments were performed in a system with closed boundaries and hence give the true residence time distribution in the riser and (ii) the measurement of the tracer concentration is exceedingly fast. The majority of previous studies have measured the RTD in risers with open boundaries, giving an erroneous measure of the RTD.Analysis of the results suggests that using pressure measurements in a riser to infer the solids inventory leads to erroneous estimates of the mean residence time. In particular, the results cast doubt on the assumption that friction and acceleration effects can be neglected when inferring the axial solids concentration profile from riser pressure measurements.An assessment of particle RTD models is also given. A stochastic particle RTD model was coupled to a riser hydrodynamic model incorporating the four main hydrodynamic regions observed in a fast-fluidised bed riser namely (i) the entrance region, (ii) a transition region, (iii) a core-annulus region and (iv) an exit region. This model successfully predicts the experimental residence time distributions.  相似文献   

13.
Solids mixing data of high quality is one of the most crucial steps for quantitative studies, but it is a difficult task to obtain in a fluidized bed especially with a 3D configuration. Therefore a novel sampling technique is developed with bed collapse method, for measuring lateral mixing of feed particles in a 3D fluidized bed. The sampling tool is designed using a “bottom‐to‐top sampling” idea. Its development, configuration and measurement repetition are discussed in detail. The effects of mixing time, fluidizing gas velocity, and particle size of bed material on the tracer distribution are investigated. A quantitative comparison of lateral dispersion coefficient shows that our results agree fairly well with measurements and predictions of correlations for lab‐scale fluidized systems in previous studies. The presented 2D profiles of the lateral mixing can be used to validate fundamental solids mixing models or verifying convenient measurement techniques. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

14.
Axial and lateral mixing of fine particles in a binary-solid riser have been investigated using a phosphor tracer method. The measured bimodal residence time distribution (RTD) demonstrated two types of axial dispersions of the fines: the dispersion of discrete particles and that of clusters. A proposed one-dimensional, bimodal dispersion model describes the bimodal RTDs very well. The axial Peclet number of the fines is not sensitive to the fraction of coarse particles, gas velocity and solids circulation rate. Lateral solids dispersion was determined by measuring the solids RTD at different radii using a point source tracer injection. A two-dimensional dispersion model describes the measured RTDs satisfactorily. Lateral solids mixing decreased as coarse particles were added into the riser. Correlations of the axial and lateral Peclet numbers obtained fit the experimental data well.  相似文献   

15.
磷光颗粒示踪技术在循环流态化中的应用   总被引:12,自引:0,他引:12       下载免费PDF全文
魏飞  金涌 《化工学报》1994,45(2):230-235
<正> 1 引言 固体颗粒的停留时间分布(Residence Time Distribution简称RTD)在循环流态化研究中十分重要,它对于了解其两相流动特性、反应器的模拟计算和工程设计是必不可少的,对于流态化干燥过程及传热行为的研究也很重要。流化床中RTD的研究已有大量文献报道,发展了诸如染色颗粒、盐颗粒、磁性颗粒、放射性颗粒及热(冷)颗粒等众多的示踪方法,但是由于固体颗粒示踪本身存在着示踪剂的注入、在线检测、残留及示踪颗粒与床体物料一致性、示踪过程对床内流场的干扰等一系列技术上的困难,不但使实验操作繁琐,而且实验结果的可靠性、重复性均不理想,特别是在颗粒运动速度较快的循环流化床中,其颗粒示踪的难度更大。为了解决上述难题,本文参考了Jin Yong等和Yu Zhiqing及M.Kwauk在常规流化床中曾采用的磷光示踪方法,在循环流化床条件下进行了新的探索。  相似文献   

16.
This paper presents a novel Lagrangian approach to model fuel mixing in gas–solid fluidized beds. In the mixing process, fuel particles are considerably larger than the inert bed material and therefore, the present work proposes three grids to account for the difference in size between the fuel particles and inert solids. The information between the grids is exchanged using an algorithm presented in the paper. A statistical method has been developed to analyze the distribution of the fuel particles in the bed. The results for the preferential positions, velocity vectors and horizontal dispersion coefficients are compared with experimental data in a bed applying simplified scaling relationships for different operating conditions. The effects of initial bed height and inlet gas velocity on the fuel mixing are investigated.It is found that the proposed Lagrangian modeling can capture the complex pattern of the movement of the fuel particles, in spite of the large difference in diameter between inert and fuel particles.  相似文献   

17.
iquid phase RTD curves were investigated in classical fixed and fluidized bed regimes with high density particles. The effect of liquid velocity was studied on bed hydrodynamics. Using an impulse tracer injection technique in a column of 5 cm inner diameter and 1.2 m height, liquid RTD, mean residence time (MRT), axial dispersion coefficient (ADC) and vessel dispersion number (N D ) were determined. ADC increases with liquid superficial velocity. It varied from 4.63 to 20.7 cm2/s for the particle Reynolds number of 43 to 279, respectively. The experimental results show that the hight density particles cause less ADC than the low density particles at an identical Reynolds number.  相似文献   

18.
利用磷光颗粒示踪技术,使用点源示踪的方法在不同的径向位置测得反映颗粒径向扩散行为的停留时间分布曲线,并对弥散细颗粒的径向混合行为进行了分析.提出二维扩散模型描述所测量的停留时间分布曲线特征.实验发现弥散细颗粒的径向扩散Peclet数随粗颗粒加入量的增加而增加,随细颗粒浓度的增大而增大,而几乎不随气速变化.给出了一个与实验数据吻合较好并可适用于单颗粒提升管的关联式.  相似文献   

19.
魏飞  程易 《化工学报》1996,47(5):595-600
利用磷光颗粒示踪技术,使用点源示踪的方法在不同的径向位置测得反映颗粒径向扩散行为的停留时间分布曲线,并对弥散细颗粒的径向混合行为进行了分析.提出二维扩散模型描述所测量的停留时间分布曲线特征.实验发现弥散细颗粒的径向扩散Peclet数随粗颗粒加入量的增加而增加,随细颗粒浓度的增大而增大,而几乎不随气速变化.给出了一个与实验数据吻合较好并可适用于单颗粒提升管的关联式.  相似文献   

20.
Gas mixing behavior was investigated in a residence time distribution experiment in a bubbling fluidized bed of 0.07 m ID and 0.80 m high. Linear low density polyethylene (LLDPE) particles having a mean diameter of 772 Μm and a particle size range of 200-1,500 Μm were employed as the bed material. The stimulus-response technique with CO2 as a tracer gas was performed for the RTD study. The effects of gas velocity, aspect ratio (H0/D) and scale-up on the axial gas dispersion were determined from the unsteady-state dispersion model, and the residence time distributions of gas in the fluidized bed were compared with the ideal reactors. It was found that axial dispersion depends on the gas velocity and aspect ratio of the bed. The dimensionless dispersion coefficient was correlated with Reynolds number and aspect ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号