首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The morphology of solution grown single crystals of a series of double crystalline diblock copolymers derived from l-lactide and ?-caprolactone has been investigated by means of transmission electron microscopy. The copolymers had a variable composition with a poly(l-lactide) weight percentage that ranged between 81 and 10%. All samples had a low polydispersity index (1.4-1.1) and a similar number average molecular weight (20,000-35,000 g/mol).Bulk crystallization and melting behaviour of diblock copolymers were evaluated by DSC and the results demonstrated the double crystalline nature of the samples. Fractionated crystallization clearly occurred in copolymers having an intermediate composition.Isothermal crystallizations were performed in dilute n-hexanol solutions at temperatures that ranged between 80 and 50 °C. Crystal morphologies were dependent on the crystallization temperature and even on the composition. Thus, the inability of poly(?-caprolactone) (PCL) blocks to crystallize between 80 and 70 °C rendered lozenge, truncated and spindle-shaped crystals associated to the poly(l-lactide) (PLLA) block. These usually had thicker edges due to PLLA overgrowths that mainly took place in their periphery. However, an overgrowth of irregular PCL crystals during subsequent cooling and crystallization at room temperature was also detected. Complex morphologies constituted by lamellar crystals of both PCL and PLLA blocks were developed at intermediate temperatures (70-65 °C), whereas elongated hexagonal morphologies mainly associated to the PCL block were detected at the lowest crystallization temperature. In general, electron diffraction patterns showed for all samples’ reflections associated to both poly(?-caprolactone) and poly(l-lactide) (α-form) crystals. The relative intensity between the two types of reflections varied according to the copolymer composition.  相似文献   

2.
Poly(glycolide-co-caprolactone) (A)-poly(ethylene glycol) (B) ABA-type triblock copolymers (PGCE) were synthesized by bulk ring opening polymerization, using the hydroxyl endgroups of poly(ethylene glycol) (PEG) as initiator and stannous octoate as catalyst. The resulting copolymers were characterized by various analytical techniques. Gel permeation chromatographic analysis indicated that the polymerization product was free of residual monomers, PEG and oligomers. 1H NMR and differential scanning calorimeter results demonstrated that the copolymers had a structure of poly(glycolide-co-caprolactone) (PGC) chains chemically attached to PEG segments. All the PGCE copolymers showed improved hydrophilicity in comparison with the corresponding PGC copolymers with the same molar ratio of glycolidyl and caproyl units. The microspheres of PGCE copolymer exhibited rough surfaces quite different from the smooth surface of PGC microspheres. This phenomenon was attentively ascribed to the highly swollen ability of PGCE copolymers and the freeze-drying process in the microspheres fabrication.  相似文献   

3.
The ring-opening polymerization of ?-caprolactone (CL) was induced by using polypropylene glycol (PPG) as an initiator in the presence of the monomer activator HCl·Et2O to synthesize triblock copolymers composed of PPG and poly(?-caprolactone) (PCL). The degree of CL conversion and the molecular weight of PCL increased linearly with the polymerization time or with the feed ratio of CL to PPG in the presence of HCl·Et2O in CH2Cl2 at 25 °C. The PCLs obtained had molecular weights close to the theoretical values calculated from the CL:PPG molar ratios and exhibited monomodal GPC curves with narrow polydispersity indexes. The apparent rate constant (kapp) for the polymerization of CL activated by HCl·Et2O was greatly affected by the ratio of HCl·Et2O/PPG. The activation energy for the polymerization of CL in this system was estimated to be 49.8 kJ/mol K. We successfully prepared PPG and PCL triblock copolymers using this activated monomer mechanism.  相似文献   

4.
Fanliang Meng  Tianxi Liu 《Polymer》2006,47(21):7590-7600
An amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(?-caprolactone) (PEO-b-PCL) was synthesized via the ring-opening polymerization of ?-caprolactone in the presence of a hydroxyl-terminated poly(ethylene oxide) monomethyl ether. The diblock copolymer was incorporated into epoxy thermosets. It is found that the formation of nanostructures of thermosetting blends is quite dependent on the uses of aromatic amine hardeners. For 4,4′-methylenebis(2-chloroaniline) (MOCA)-cured thermosetting system, the homogeneous morphology was obtained at the compositions investigated. Nonetheless, the nanostructured thermosets were obtained when the blends were cured with 4,4′-diaminodiphenylsulfone (DDS). The differential scanning calorimetry (DSC) showed that the nanostructured thermosets did not displayed any crystallinity although the subchains of the diblock copolymer are crystalline. The nanostructures were evidenced by means of atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The dependence of morphological structures on the types of aromatic amines for epoxy and PEO-b-PCL thermosetting blends were interpreted on the basis of the difference in hydrogen bonding interactions resulting from the structure of curing agents. Considering the complete miscibility of the subchains (viz. PEO and PCL) with the precursors of epoxy resin before curing, it is judged that the formation of the nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation, which is in marked contrast to the mechanism of self-assembly, i.e., micelle structures of block copolymers are formed prior to curing, followed by fixing these nanostructures via curing.  相似文献   

5.
Synthesis of poly(ethylene glycol)-polydimethylsiloxane amphiphilic block copolymers is discussed herein. Siloxane prepolymer was first prepared via acid-catalyzed ring-opening polymerization of octamethylcyclotetrasiloxane (D4) to form polydimethylsiloxane (PDMS) prepolymers. It was subsequently functionalized with hydroxy functional groups at both terminals. The hydroxy-terminated PDMS can readily react with acid-terminated poly(ethylene glycol) (PEG diacid) to give PEG-PDMS block copolymers without using any solvent. The PEG diacid was prepared from hydroxy-terminated PEG through the ring-opening reaction of succinic anhydride. Their chemical structures and molecular weights were characterized using 1H NMR, FTIR and GPC, and thermal properties were determined by DSC. The PEG-PDMS copolymer was incorporated into chitosan in order that PDMS provided surface modification and PEG provided good water swelling properties to chitosan. Critical surface energy and swelling behavior of the modified chitosan as a function of the copolymer compositions and contents were investigated.  相似文献   

6.
Amphiphilic polylactide/poly(ethylene glycol) (PLA–PEG) diblock copolymers with functional groups at the PEG chain ends were synthesized by coupling PLA and PEG homopolymers using different coupling agents. PLA precursors with different endgroups were synthesized by ring‐opening polymerization of l ‐lactide in the presence of different initiators such as octanol, acetic acid or benzoic acid, or water, using non‐toxic zinc lactate as catalyst. The mechanism of the ring‐opening polymerization of lactide initiated by carboxyl groups was investigated and discussed in comparison with the literature. N,N'‐carbonyldiimidazole was used to couple the two hydroxyl groups of PLA and PEG, using 4‐dimethylaminopyridine (DMAP) as catalyst. Dicyclohexylcarbodiimide (DCC) and DMAP were adopted to couple the carboxyl group and the hydroxyl group of PLA and PEG, respectively, while DCC and N‐hydroxysuccinimide were used to connect PLA and PEG by coupling their carboxyl and amine groups. Comparison of different coupling routes shows that the DCC/DMAP one exhibits the highest efficiency. A common tumor targeting ligand, folic acid, was attached to PLA–PEG with hydroxyl endgroups using the DCC/DMAP route. The resulting PLA–PEG copolymers bearing folic acid present great interest for targeted delivery of anti‐cancer drugs. © 2012 Society of Chemical Industry  相似文献   

7.
Xiao-hui Liu  Xiu-lan Tang 《Polymer》2010,51(13):2857-7531
A facile self-condensing vinyl polymerization (SCVP) system, the combination of glycidyl methacrylate, Cp2TiCl2 and Zn, has been firstly used to prepare novel hyperbranched polymers, consisting of vinyl polymers as the backbone, and cyclic ester polymers (poly(?-caprolactone) or poly(l-lactide)) as the side chains. The polymerizations are initiated by the epoxide radical ring-opening catalyzed by Cp2Ti(III)Cl which is generated in situ via the reaction of Cp2TiCl2 with Zn. The key to success is that the polymerizations can proceed concurrently via two dissimilar chemistries possessing the opposite active initiating species, including ring-opening polymerization (ROP) and controlled/living radical polymerization (CRP). We have demonstrated that this facile one-step polymerization technique can be applied successfully to prepare highly branched polymers with a multiplicity of end reactive functionalities including Ti alkoxide, hydroxyl and vinyl functional groups.  相似文献   

8.
The polymerization of trimethylene carbonate (TMC) in the presence of HCl·Et2O via activated monomer mechanism was performed to synthesize 4a-PEG-b-PTMC star block copolymers composed of poly(ethylene glycol) (PEG) and poly(trimethylene carbonate) (PTMC) using four-arm (4a) PEG as an initiator. The TMC conversion and molecular weight of PTMC increased linearly with the polymerization time or the feed ratios of the TMC to 4a-PEG in the presence of HCl·Et2O in CH2Cl2 at 25 °C. The obtained PTMC had molecular weights close to the theoretical value calculated from TMC to PEG molar ratio and exhibited monomodal GPC curve. We prepared successfully 4a-PEG-b-PTMC star block copolymers without metal catalyst at room temperature via living ring-opening polymerization (ROP) of TMC from 4a-PEG as an initiator in the presence of HCl·Et2O as a monomer activator. The CMCs of the 4a-PEG-b-PTMC star block copolymers determined from fluorescence measurements. The CMCs of the 4a-PEG-b-PTMC star block copolymers decreased in the order of the increase in the PTMC segment. The partition equilibrium constant, Kv, which is an indicator of the hydrophobicity of the micelles of the 4a-PEG-b-PTMC star block copolymers in aqueous media, increased with the increase in the PTMC segment. In conclusion, we confirmed that the 4a-PEG-b-PTMC star block copolymers form micelles and hence may be potential hydrophobic-drug delivery vehicles.  相似文献   

9.
Lingling Ge 《Polymer》2007,48(9):2681-2691
The microstructure of Triton X-100 (TX-100)/poly (ethylene glycol) (PEG) complex has been investigated by fluorescence resonance energy transfer (FRET), dynamic light scatter (DLS), freeze-fractured transmission electron microscopy (FF-TEM) and 1H NMR technology. The nonionic surfactant TX-100 and pyrene are employed as energy donor and acceptor respectively, and the average distance between them is calculated quantitatively in the systems of TX-100/PEG with different molecular weights (MW). The results of FRET study indicate that the presence of PEG leads to the separation of donor and acceptor in TX-100 micelle, suggesting that PEG chains insert into TX-100 micelles making the microstructure of PEG-bound TX-100 aggregates looser than that of free micelles, which is independent of the MW of PEG. However, FF-TEM, DLS and 1H NMR studies show that the morphology of TX-100/PEG complex depends on the MW of the polymer: PEG with shorter chain (MW < 2000 Da) insert into and wrap around TX-100 micelles and form sphere-like complex, while that with longer chain (MW > 2000 Da) would interact with numbers of TX-100 micelles and form coral-shaped clusters. In addition, the effects of temperature and alcohol on the microstructure of TX-100/PEG complex are studied.  相似文献   

10.
Three types of pegylated amphiphilic copolymers of poly(δ‐valerolactone) (PVL) were copolymerized with methoxy poly(ethylene glycol) (MePEG) and poly(ethylene glycol) (PEG4000 and PEG10,000), respectively. Pegylation of PVL allowed copolymers possessing amphiphilic property and efficiently self‐assembled to form micelles with a low critical micelle concentration (CMC) in the range of 10?7–10?8M. The average molecular weight of copolymers was in the range of 10,000–20,000 Da, and the polydispersity of copolymers was about 1.7–1.8. Higher mobility of low molecular weight PEG (i.e., MePEG and PEG4000) than high molecular weight PEG10,000 allowed valerolactone ring opening more efficient in terms of PVL/MePEG and PVL/PEG4000 copolymers possessing longer chain length in hydrophobic domain. Pegylated PVL with low CMC and triblock structure was preferred to encapsulate drug during micelle formation. Although all of these amphiphilic copolymers exhibited controlled release character, the micelles formed by triblock copolymer possessed a more stable core‐shell conformation than that by diblock copolymer, and resulted in the release of drug from triblock micelles slower than that from diblock micelles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1836–1841, 2006  相似文献   

11.
Mingtao Run  Sizhu Wu  Gang Wu 《Polymer》2005,46(14):5308-5316
Isothermal crystallization and subsequent melting behavior of mesoporous molecular sieve (MMS) filled poly(ethylene terephthalate) (PET) composites have been investigated at the designated temperature by using differential scanning calorimeter (DSC). The commonly used Avrami equation was used to fit the primary stage of the isothermal crystallization. The Avrami exponents n were evaluated to be 2<n<3 for the neat PET and composites. MMS particles acting as nucleating agent in composite accelerated the crystallization rate with decreasing the half-time of crystallization. The crystallization activation energy calculated from the Arrhenius' formula was reduced as MMS content increased. It is shown that the MMS particles made the molecular chains of PET easier to crystallize during the isothermal crystallization process. Subsequent differential scanning calorimeter scans of the isothermally crystallized samples exhibited different melting endotherms. It is found that much smaller or less perfect crystals formed in composites due to the interaction between molecular chains and the MMS particles. The crystallinity of composites was enhanced by increasing MMS content.  相似文献   

12.
甘颖  徐国财  曹震  李欣 《安徽化工》2012,38(2):37-38,41
在超声辐射作用下,以PEG600为还原剂和稳定剂,合成了纳米钯/PEG复合材料.XRD和UV-Vis结果证明了氯化钯被完全还原成钯,TEM显示PEG呈长约0.5μm,直径为50~80nm的棒状结构,并将部分纳米钯粒子包覆在其中.  相似文献   

13.
Reactive blending at 290 °C of a series of mixtures of poly(ethylene terephthalate) (PET) and poly(1,4-butylene succinate) (PBS) led to the formation of block PET/PBS copolyesters. The block lengths of the resulting copolymers decreased with the severity of the treatment. Copolyesters with PET/PBS molar compositions of 90/10, 80/20, 70/30, and 50/50 were prepared by this method and their composition and microstructure were characterized by 1H and 13C NMR, respectively. The Tg, Tm, and crystallinity of the copolymers decreased as the content in PBS and the degree of randomness increased. The elastic modulus and tensile strength of the copolymers decreased with the content of PBS, whereas, on the contrary, the elongation at break increased. The PET/PBS copolymers exhibited a pronounced hydrolytic degradability, which increased with the content in 1,4-butylene succinic units. Hydrolysis mainly occurred on the aliphatic ester groups.  相似文献   

14.
Xiaolin Li  Jiacong Shen 《Polymer》2006,47(6):1987-1994
A novel hydroxyl-capped comb-like poly[poly(ethylene glycol) methacrylate] (PPEGMA) was prepared via atom transfer radical polymerization (ATRP) of α-methylacryloyl-ω-hydroxyl-poly(ethylene glycol) at ambient temperature. The polymerization kinetics of the block copolymer was studied by gel permeation chromatography (GPC) and 1H NMR. It is of interest to find the well-defined comb-like PEG can associate into micelles, which have hydrophilic PEG shell end-capped by hydroxyl groups. The hydroxyl in the shell were further cross-linked by divinyl sulfone (DVS), which could couple with two capped-end hydroxyl groups. The XPS, TEM, AFM and laser scattering particle size distribution analyzer results revealed that reactive micelles could be cross-linked by DVS. The reactive, cross-linkable micelles with PEG shell may have great potential as new drug carrier and nanoreactor, etc.  相似文献   

15.
In this work, green tea polyphenols were coprecipitated with a biodegradable polymer (poly-?-caprolactone, MW: 25,000) by a semi continuous supercritical antisolvent process (SAS). Carbon dioxide was used as antisolvent in addition to be a dispersing agent. Green tea extracts were obtained by microwaved assisted extraction (MAE) technique with acetone. The influence of different process parameters, including the operating pressure (8-12 MPa) and temperature (283-307 K), the polymer to solutes concentration (w/w) ratio (4-58), and the CO2 to solution mass flow rate ratio (4-10) have been studied experimentally. Total content of polyphenols, quantified according to the Folin-Cicalteu method, showed concentrations from 60 to 100% of the maximum theoretical composition. Also HPLC analyses were performed to verify the presence of some of the major tea catechins. SEM images of the products show small particles (3-5 μm) with narrow particle size distribution with a high degree of agglomeration. Drug release profiles in phosphate buffer (pH = 6.8) reveal that the majority of catechins are encapsulated in the crystalline domains of the polymer.  相似文献   

16.
The synthesis of 2,2,3,3‐tetrahydro‐perfluoroundecanoyl end‐functionalized polystyrene–poly(ethylene oxide) block (PS‐block‐PEO‐RF) copolymers and their matching PS‐block‐PEO diblock copolymers was carried out by sequential anionic polymerization. Viscometry and 19F NMR studies show that the PS‐block‐PEO copolymers, in contrast to their matching PS‐block‐PEO‐RF copolymers, exhibit a micellar rather than the associative behavior seen for the latter. However, the presence of an excess of fluorinated acid, used for end‐functionalization, produces a reduction of the associative behavior above the overlap concentration, with the fluorinated acid acting like a surfactant. A competition may also occur between PS—and RF—mediated micellization. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Poly(m-xylylene adipamide)/poly(ethylene terephthalate)(MXD6/PET) copolymers are synthesized by melt copolycondensation with 1–5 wt% low molecular weight PET oligomers into the MXD6 oligomers at 260 °C.FR-IR and1 H NMR analysis results indicate that the interchange reaction has occurred between MXD6 oligomers and PET oligomers. The thermal behavior of copolymers shows that the melting temperature of MXD6/PET copolymers decreases with the increasing of amount of PET oligomers, while the crystallization temperature accordingly increases. And the equilibrium temperature Tm0 is evaluated to be 251.8 °C for the copolymers with5 wt% PET oligomer adding, which is very close to that of neat MXD6. The tensile and impact strength of MXD6/PET copolymers are significantly improved than that of pure MXD6 by mechanical properties test, and the microfibril structure in the impact fracture sample's surface reveals the feature of ductile fracture.  相似文献   

18.
A series of multiblock copolymer, Poly(L-lactide)-b-Poly(ethylene glycol) (PLLA-b-PEG) were synthesized and characterized by Fourier transform infrared spectra, differential scanning calorimetry and wide angle X-ray diffraction. PLLA-b-PEG fibrous scaffolds were prepared by electrospinning. The morphology of the fibers was affected by the solution concentration and different weight ratio of PLLA/PEG. In comparison with the electrospun PLLA membrane, the electrospun fibrous membranes of PLLA-b-PEG demonstrated an enhanced water absorption percentage and reductive water contact angle. The electrospun PLLA-b-PEG with weight ratio 90/10 and 75/25 fibrous membranes exhibited good flexibility and deformability to be beneficial for tissue engineering scaffolds.  相似文献   

19.
Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of ε-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 °C in xylene solution. The copolymer composition and triblock structure were confirmed by 1H NMR and 13C NMR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature Tm and crystallization temperature Tc of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The 1H NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed the PCL-core/PEG-shell structure of the micelles.  相似文献   

20.
The aim of this investigation was to develop coating materials based on poly(ethylene glycol) (PEG) covalently grafted onto silazane polymers for marine antifouling applications. The optimum conditions for grafting PEG were defined to have a high selectivity toward olefin hydrosilylation. Thick crack-free films were obtained by curing at room temperature of the PEG grafted silazane precursors. The solidification process has been investigated by FTIR spectroscopy, 29Si NMR in the solid state, thermogravimetric analysis (TGA) as well as elemental analysis. The main reactions that occur during curing are hydrolysis-condensation reactions of alkoxysilane, SiH and SiN functionalities. The PEG-graft-PSZ coatings exhibit excellent repellency against gram-negative Neisseria sp. and gram-positive Clostridium sp. in comparison with the pristine polysilazane surface. The anti-adhesion performance of the coatings depends on the grafting density and the chain length of PEG. The shortest PEG(350 g/mol)-graft-PSZ with the highest graft density was found to have the best anti-adhesion performance. As the density of grafted PEG(750 g/mol) and PEG(2000 g/mol) chains onto the PSZ surface is approximately equal, the relative effectiveness of these two types of PEG is controlled by the length of the PEG chain. The PEG(2000 g/mol)-graft-PSZ coatings are more efficient than the PEG(750 g/mol)-graft-PSZ coatings for the bacterial anti-adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号