首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水泥基本性能标准检测方法研究了经化学-煅烧法除氯处理的聚氯化铝废渣(简称复合除氯PAC废渣)的细度和掺量对标准稠度需水量、凝结时间、强度等水泥性能的影响。研究结果表明:随着复合除氯PAC废渣的细度越来越细,水泥的标准稠度需水量越来越大,水泥的凝结时间也逐渐缩短,对水泥的强度增强效果越来越弱。复合除氯PAC废渣的实用细度为粒径大于80 μm的粒子质量分数为1.5%~2.5%;随着实用细度的加湿复合除氯PAC废渣掺量的逐渐增加,水泥28 d抗压强度出现先增强后降低现象,在掺量为17%时,水泥28 d抗压强度的增长率出现临界值。  相似文献   

2.
党玉栋  钱觉时  曲艳召  郭清春  贾兴文  王智 《硅酸盐学报》2012,40(5):657-658,659,660,661,662,663
研究了饱和轻骨料内养护对不同细度水泥配制的砂浆自收缩、强度、水化程度、显微硬度以及界面过渡区形貌等的影响。结果发现:内养护可显著降低不同细度水泥配制的砂浆的早期自收缩,但减缩效果随着水泥比表面积增大而降低;内养护的砂浆后期自收缩仍持续增加,水泥越粗,自收缩后期增长越大;内养护能够显著促进水泥早期水化,这种促进作用在细水泥中最显著。在相同条件下,轻骨料的引入对砂浆强度的影响作用与水泥细度有关;显微硬度以及界面过渡区微观形貌结果显示,轻骨料内养护能显著改善粗水泥体系微观结构,对细水泥体系微观结构的改善则无显著贡献。  相似文献   

3.
In this study, the effects of 35, 45, and 55 wt.% natural pozzolan addition on the properties of blended cement pastes and mortars were investigated. Blended cements with 450 m2/kg Blaine fineness were produced from a Turkish volcanic tuff in a laboratory mill by intergrinding portland cement clinker, natural pozzolan, and gypsum. The cements were tested for particle size distribution, setting time, heat of hydration, compressive strength, alkali-silica activity, and sulfate resistance. Cement pastes were tested by TGA for Ca(OH)2 content and by XRD for the crystalline hydration products. The compressive strength of the mortars made with blended cements containing large amounts of natural pozzolan was lower than that of the portland cement at all tested ages up to 91 days. Blended cements containing large amounts of pozzolan exhibited much less expansion with respect to portland cement in accelerated alkali-silica test and in a 36-week sulfate immersion test.  相似文献   

4.
Grinding tests were conducted in a laboratory steel ball mill, to investigate the grind-ability of some natural and artificial materials as “additions” for incorporation in Portland cement. Strength tests were performed on mixed cements composed of 71% Portland cement clinker, 25% addition and 4% gypsum. In one series of experiments, the components of the mixed cement were separately ground and in another one they were simultaneously ground. It was found from surface production curves and from compressive strength data that when materials which are harder to grind than clinker such as sand are interground with clinker, the resulting cement develops higher early strength than a corresponding cement in which the pozzolanic addition is softer than clinker. For materials which are softer to grind than clinker, separate grinding of the cement components is better than combined grinding, particularly for the development of early strength.  相似文献   

5.
Studies on blended cements containing a high volume of natural pozzolans   总被引:1,自引:0,他引:1  
This paper presents the results of an investigation on the characteristics of laboratory-produced blended portland cements containing 55% by weight volcanic tuffs from Turkey. Volcanic tuffs from two different resources were used. Using different grinding times, particle size distribution, setting time, compressive strength, and alkali-silica activity of the blended cements were investigated and compared with reference portland cements ground for the same time period. For the compressive strength test, a superplasticizer was used to obtain mortar mixtures of adequate workability at a constant water-to-cement (w/c) ratio of 0.45. Compared to portland cement, the blended cements containing 55% pozzolan showed somewhat lower strengths up to 91 days when the grinding time was 90 min. However, at 91 days, blended cements and portland cements ground for 120 min showed similar strength. Moreover, blended cements containing 55% natural pozzolans showed excellent ability to reduce the alkali-silica expansion.  相似文献   

6.
The effect of three different natural pozzolans from Turkish deposits on the properties of blended cements produced by intergrinding cement clinker with a high volume of natural pozzolan (55 wt.% of the cementitious material) was investigated. The particle size distribution of blended cements, setting time, heat of hydration, and compressive strength of blended cement mortars were determined. Experimental results showed that the hardness of the pozzolanic material strongly influenced the particle size distribution and the related properties of the blended cements by affecting the fineness of the components of the blended product. The early strength of the mortars was strongly affected by the particle size distribution of blended cements, whereas the strength development performance of the mortars was more related to the pozzolanic activity of the natural pozzolan present in the blended cement.  相似文献   

7.
The effect of fineness of fly ash on mechanical properties and alkali–silica reaction resistance of cement mortar mixtures incorporating fly ash has been investigated within the scope of this study. Blaine fineness of fly ash has been increased to 907 m2/kg from its original 290 m2/kg value by a ball mill. Test samples were prepared by replacing cement 20, 40 and 60%, with finer and coarser fly ashes and kept under standard and steam curing conditions until testing. Test results showed that grinding process improved the mechanical properties of all samples significantly. The beneficial effect of grinding fly ash, may increase utilization of this by-product in precast and ready-mix concrete industries. Incorporation of fly ash with different fineness values and ratios also decreased the expansions to harmless levels of cement mortars due to alkali–silica reaction.  相似文献   

8.
The fineness of a cement is an important factor affecting the rate of strength development. This paper examines the importance of the fineness of natural pozzolans to the strength development of lime-pozzolan cements (LPCs). A natural pozzolan from Bolivia, which is typical of natural pozzolans found in South and Central America, was ground to various finenesses, blended with lime with a mass ratio of 80:20, and the resulting LPC was used to make hardened cement paste cylinders. In some pastes 4% sodium sulphate or 4% sodium chloride activator was used to enhance strength development. Strength of the cylinders were measured at ages from 3 to 90 days during continuous moist curing at 50°C. The experimental results show that there is a good linear correlation between the Blaine fineness of the natural pozzolan and compressive strength at all ages and for all pastes. The fineness of the natural pozzolan has its most significant effect on early strength gain. The addition of chemical activator increases both the rate of strength gain and the sensitivity of strength gain to fineness.  相似文献   

9.
Alkali-activated cements are widely studied as alternative and sustainable binder in soil stabilization. In this research work, a mold was designed and constructed, which allowed small cubic specimens to be made (40 × 40 × 40 mm3). With the newly designed mold, cubic samples of soil stabilized with portland cement (OPC) and alternative AAC (based on spent fluid catalytic cracking catalyst FCC) were prepared from which compressive strength was obtained. Cylindrical specimens were also prepared using the same binders as in the previous case to obtain their compressive strength. The results obtained in both cases were compared. Greater resistances for cubic samples were achieved. The cubic specimens were selected for being better in terms of standard deviation of compressive strength for AAC stabilized soil. The obtained compressive strength and standard deviation results were compared between the soil specimens stabilized with different stabilizers cured at 7, 14, 28, and 90 days. The method allows small-sized cubic specimens to be prepared. It improves ergonomics. It also facilitates a large number of specimens being obtained with a small amount of sample. Soil stabilized with AAC yielded higher compressive strength after 90 days compared to that with OPC.  相似文献   

10.
Properties and hydration of blended cements with steelmaking slag   总被引:1,自引:0,他引:1  
The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the “0-5 mm”, due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C2S and its low content in calcium silicates.  相似文献   

11.
12.
A comparison was made between the early-age hydration of cements blended with micronized zeolitite and quartzite powders. The Portland cement replacement in the mixes was 30%, and the effect of introducing a superplasticiser to lower the required water to solid ratio was assessed. The cement pastes were hydrated at 40 °C and monitored in situ by time-resolved synchrotron X-ray powder diffraction combined with Rietveld quantitative phase analysis.The quantitative evolution of phase weight fractions showed that the addition of the zeolite tuff accelerated the hydration rate of the main C3S cement component. Blending with the quartzite powder of similar fineness did not affect the C3S hydration rate. Reduction of the water to solid ratio by introduction of the superplasticiser had a retarding effect on the hydration of the zeolitite-blended cement over the early hydration period up to 3 days.The AFt or ettringite reaction products, formed promptly after the addition of water to the mixtures, underwent a crystal structural modification over the induction period up to 4 to 6 hours of reaction. The continuous contraction of the c-cell parameter and expansion of the a-cell parameter towards the ideal values for AFt or ettringite reflects the structural adaptation of the AFt to the changing availability of sulphate over the course of the first hours of hydration. The observed structural changes were less pronounced in the zeolitite blended cement. This is related to the dilution of the overall sulphate content in the blended cement and highlights the need to control and optimise sulphate additions in blended cements.  相似文献   

13.
This paper evaluates the performance of steel furnace slag (SFS) coarse aggregate in blended slag and low calcium fly ash geopolymer concrete (GPC). The geopolymer binder is composed of 90% of low calcium fly ash and 10% of ground granulated blast furnace slag (GGBFS). Mechanical and physical properties, shrinkage, and detailed microstructure analysis were carried out. The results showed that geopolymer concrete with SFS aggregate offered higher compressive strength, surface resistivity and pulse velocity than that of GPC with traditional aggregate. The shrinkage results showed no expansion or swelling due to delayed calcium oxide (CaO) hydration after 320 days. No traditional porous interfacial transition zone (ITZ) was detected using scanning electron microscopy, indicating a better bond between SFS aggregate and geopolymer matrix. Energy dispersive spectroscopy results further revealed calcium (Ca) diffusion at the vicinity of ITZ. Raman spectroscopy results showed no new crystalline phase formed due to Ca diffusion. X-ray fluorescence result showed Mg diffusion from SFS aggregate towards geopolymer matrix. The incorporation of Ca and Mg into the geopolymer structure and better bond between SFS aggregate and geopolymer matrix are the most likely reasons for the higher compressive strength observed in GPC with SFS aggregate.  相似文献   

14.
Borogypsum, which consists mainly of gypsum crystals, B2O3 and some impurities, is formed during the production of boric acid from colemanite, which is an important borate ore. In this study, the effect of borogypsum and calcined borogypsum on the physical properties of ordinary Portland cement (OPC) has been investigated. The calcination temperature and transformations in the structures of borogypsum and natural gypsum were determined by differential thermal analysis (DTA), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques. Thermal experiments were carried out between ambient temperature and 500 °C in an air atmosphere at a heating rate of 10 °C min−1. After calculation of enthalpy and determination of conversion temperatures, borogypsum (5% and 7%), hemihydrate borogypsum (5%) and natural gypsum (5%) were added separately to Portland cement clinker and cements were ground in the laboratory. The final products were tested for chemical analysis, compressive strength, setting time, Le Chatelier expansion and fineness properties according to the European Standard (EN 196). The results show that increasing the borogypsum level in Portland cement from 5% to 7% caused an increase in setting time and a decrease in soundness expansion and compressive strength. The cement prepared with borogypsum (5%) was found to have similar strength properties to those obtained with natural gypsum, whereas a mixture containing 5% of hemihydrate borogypsum was found to develop 25% higher compressive strength than the OPC control mixtures at 28 days. For this reason, utilization of calcined borogypsum in cement applications is expected to give better results than untreated borogypsum. It is concluded that hemihydrate borogypsum could be used as a retarder for Portland cement as an industrial side. This would play an important role in reducing environmental pollution.  相似文献   

15.
This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of 4500 cm2/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement ≥5000 cm2/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.  相似文献   

16.
The present paper introduces a new rapid, relevant and reliable (R3) test to predict the pozzolanic activity of calcined clays with kaolinite contents ranging from 0 to 95%. The test is based on the correlation between the chemical reactivity of calcined clays in a simplified system and the compressive strength of blends in standard mortar. The simplified system consists of calcined clay portlandite and limestone pastes with sulfate and alkali levels adjusted to reproduce the reaction environment of hydrating blended cements. The pastes were hydrated for 6 days at 20 °C or for 1 day at 40 °C. The chemical reactivity of the calcined clay can be obtained first by measurement of the heat release during reaction using isothermal calorimetry and second by bound water determination in a heating step between 110 °C and 400 °C.Very good correlations were found between the mortar compressive strength and both measures of chemical reactivity.  相似文献   

17.
Ionic competition in stabilization of major heavy metals from electric arc furnace dust (EAFD) was investigated. The cementitious materials tested (ground granulated blast furnace slag (GGBFS) and ordinary Portland cement (OPC)) were put in contact with solutions made of various combinations of Cr(VI), Pb(II), Zn(II), Ni(II) and Mo(VI) ions. The presence of Ni, Zn or Mo did not influence the Cr fixation by GGBFS and OPC. The ionic competition phenomenon between Cr and Pb was observed for GGBFS in particular.Long-term leaching tests with OPC-EAFD and GGBFS-EAFD showed that OPC is more effective in fixing Cr at 7 days (4.7 mg/L in solution) than GGBFS (79.4 mg/L in solution). GGBFS becomes effective with time and offers a better performance from 56 to 365 days (under 1 mg/L in solution) than OPC (until 11 mg/L in solution). GGBFS and OPC decreased Zn, Pb and Ni concentrations in leaching solutions under 2.5 mg/L.  相似文献   

18.
This study has examined the effect of natural pozzolan (NP), colemanite ore waste (CW), coal fly ash (FA), and coal bottom ash (BA) on the properties of cement and concrete. The parameters studied included compressive strength, bending strength, volume expansion, and setting time. A number of cements were prepared (in the presence of fixed quantity of 10% FA, 10% BA, and 4% CW) by the replacement of Portland cement (PC) with NP in range of 5-30%. The results showed that the final setting time of cement pastes were generally accelerated when the NP replaced part of the cement. However, NP exhibited a significant retarding effect when used in combination with CW. The results also showed that the inclusion of NP at replacement levels of 5% resulted in an increase in compressive strength of the specimens compared with that of the control concrete. The replacement of PC by 10-15% of NP in the presence of fixed quantity of CW improves the bending strength of the specimens compared with control specimens after 60 days of curing age.  相似文献   

19.
Characterization of a nontraditional binding material containing cement kiln dust (CKD) and ground granulated blast furnace slag (GGBFS) is discussed in this paper. Significant compressive strength was obtained for a CKD–GGBFS blend with 70% CKD and 30% GGBFS at a water-to-binder ratio of 0.40 after 2 days of curing at elevated temperature. Similar strength was also obtained for the samples subjected to normal moisture curing over a period of 28 days. The compressive strength increased with additional moist curing in both the cases. The microstructural and the mineralogical examinations show that the strength development was mainly due to the formation of calcium silicate hydrate (C-S-H). In addition to normal C-S-H, aluminum and magnesium incorporated C-S-H phases were also present in the CKD–GGBFS blends. The formation of ettringite appears to be a contributing factor in early age strength development of CKD–GGBFS binder.  相似文献   

20.
水泥水化热与比表面积和化学组成有关,但是相对于调整水泥的化学组成来说,通过减小水泥的比表面积来降低水泥水化热要容易得多。为了探索水泥比表面积与碾压混凝土抗裂性能的关系,采用相同熟料磨制了3种细度的水泥,研究了水泥细度对水化热、胶砂强度的影响,以及对混凝土的工作性、力学性能(抗压强度、抗拉强度和抗拉弹性模量)、极限拉伸值、绝热温升等性能的影响;同时,采用温度–应力试验机,评估了在100%约束和近似绝热条件下水泥细度对早龄期碾压混凝土综合抗裂性能的影响。结果表明:水化热与比表面积成线性关系,降低水泥比表面积是降低混凝土温升的有效、便捷的措施;粗磨水泥提高了碾压混凝土的工作性,降低了混凝土的抗压强度和弹性模量,但混凝土极限拉伸值没有明显变化;温度–应力试验表明,随着水泥比表面积的降低,混凝土第二零应力温度更低,粗磨水泥碾压混凝土综合抗裂风险更低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号