首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Describes the first 77 K microwave measurements for resonant-tunnelling hot electron transistors (RHETs) fabricated using GaInAs/AlInAs pseudomorphic heterostructures. A collector current peak-to-valley ratio of 10 is obtained with a peak collector current density of 2*10/sup 5/ A/cm/sup 2/. A current gain cut-off frequency f/sub T/ of 63 GHz and a maximum oscillation frequency f/sub max/ of 44 GHz are measured at 77 K with an emitter current density of 1.1*10/sup 5/ A/cm/sup 2/.<>  相似文献   

2.
An advanced analog/digital bipolar VLSI technology that combines on the same chip 2-ns 10K I2L gates with 1K analog devices is proposed. The new technology, called high-density integration technology-2 (HIT-2), is based on a new structure concept that consists of three major techniques: shallow grooved-isolation, I2L active layer etching, and I2L current gain increase. I2L circuits with 80-MHz maximum toggle frequency have developed compatibly with n-p-n transistors having a BVCEOof more than 10 V and an fTof 5 GHz, and lateral p-n-p transistors having an fTof 150 MHz.  相似文献   

3.
InP/In/sub 0.53/Ga/sub 0.47/As/InP double heterojunction bipolar transistors (DHBT) have been designed for increased bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 450 GHz f/sub /spl tau// and 490 GHz f/sub max/, which is the highest simultaneous f/sub /spl tau// and f/sub max/ for any HBT. The devices have been scaled vertically for reduced electron collector transit time and aggressively scaled laterally to minimize the base-collector capacitance associated with thinner collectors. The dc current gain /spl beta/ is /spl ap/ 40 and V/sub BR,CEO/=3.9 V. The devices operate up to 25 mW//spl mu/m/sup 2/ dissipation (failing at J/sub e/=10 mA//spl mu/m/sup 2/, V/sub ce/=2.5 V, /spl Delta/T/sub failure/=301 K) and there is no evidence of current blocking up to J/sub e//spl ges/12 mA//spl mu/m/sup 2/ at V/sub ce/=2.0 V from the base-collector grade. The devices reported here employ a 30-nm highly doped InGaAs base, and a 120-nm collector containing an InGaAs/InAlAs superlattice grade at the base-collector junction.  相似文献   

4.
Describes 150-nm-thick collector InP-based double heterojunction bipolar transistors with two types of thin pseudomorphic bases for achieving high f/sub T/ and f/sub max/. The collector current blocking is suppressed by the compositionally step-graded collector structure even at J/sub C/ of over 1000 kA/cm/sup 2/ with practical breakdown characteristics. An HBT with a 20-nm-thick base achieves a record f/sub T/ of 351 GHz at high J/sub C/ of 667 kA/cm/sup 2/, and a 30-nm-base HBT achieves a high value of 329 GHz for both f/sub T/ and f/sub max/. An equivalent circuit analysis suggests that the extremely small carrier-transit-delay contributes to the ultrahigh f/sub T/.  相似文献   

5.
Describes a study of the DC and microwave characteristics of resonant-tunnelling hot electron transistors (RHETs) fabricated using a new i-InAlGaAs/i-GaAs collector barrier structure. The current gain at a low collector-base voltages was improved, enabling the RHETs to operate at low collector-emitter voltages and to decrease the transit time. A cutoff frequency f/sub T/ of 121 GHz was achieved at a temperature below 77 K with an emitter current density of 6.7*10/sup 4/ A/cm/sup 2/. This is the highest value yet reported for either hot electron transistors or the quantum-effect devices.<>  相似文献   

6.
Small-area regrown emitter-base junction InP/In-GaAs/InP double heterojunction bipolar transistors (DHBT) using an abrupt InP emitter are presented for the first time. In a device with emitter-base junction area of 0.7 /spl times/ 8 /spl mu/m/sup 2/, a maximum 183 GHz f/sub T/ and 165 GHz f/sub max/ are exhibited. To our knowledge, this is the highest reported bandwidth for a III-V bipolar transistor utilizing emitter regrowth. The emitter current density is 6/spl times/10/sup 5/ A/cm/sup 2/ at V/sub CE,sat/ = 1.5 V. The small-signal current gain h/sub 21/ = 17, while collector breakdown voltage is near 6 V for the 1500-/spl Aring/-thick collector. The emitter structure, created by nonselective molecular beam epitaxy regrowth, combines a small-area emitter-base junction and a larger-area extrinsic emitter contact, and is similar in structure to that of a SiGe HBT. The higher f/sub T/ and f/sub max/ compared to previously reported devices are achieved by simplified regrowth using an InP emitter and by improvements to the regrowth surface preparation process.  相似文献   

7.
A new MoSi/sub 2/-CVD-Al double-level interconnection system is developed to obtain a high packing density in I/sup 2/L circuits. Taking advantage of MoSi/sub 2/, a fine pattern consisting of a Iinewidth of 2.5 /spl mu/m aid a spacing of 1 /spl mu/m is achieved for the first-level interconnections. This new system has a higher reliability than the normaf Al-CVD-Al structure because of the stability of the MoSi2 surface. The fundamental properties of 1/sup2/L gates with MoSi2 interconnections, namely, gain, propagation delay time, and toggle frequency of a T flip-flop, are measured. At practical injector currents, they show nearly the same values as with Al interconnectiorm The resistance effects of MoSi/sub 2/ interconnections are calculated with regard to the unbalance of the injector currents and increase of the propagation delay time. The calculations show that these effects can be ignored at an injector current of 1 /spl mu/A/gate. At higher injector currents, the MoSi/sub 2/ interconnection resistance must be taken into account in I/sup 2/L pattern layout.  相似文献   

8.
P/sup +/-poly-Si gate MOS transistors with atomic-layer-deposited Si-nitride/SiO/sub 2/ stack gate dielectrics (EOT=2.50 nm) have been fabricated. Similar to the reference samples with SiO/sub 2/ gate dielectrics (T/sub ox/=2.45 nm), clear saturation characteristics of drain current are obtained for the samples with stack gate dielectrics. Identical hole-effective mobility is obtained for the samples with the SiO/sub 2/ and the stack gate dielectrics. The maximum value of hole-effective mobility is the same (54 cm/sup 2//Vs) both for the stack and the SiO/sub 2/ samples. Hot carrier-induced mobility degradation in transistors with the stack gate dielectrics was found to be identical to that in transistors with the SiO/sub 2/ gate dielectrics. In addition to the suppression of boron penetration, better TDDB characteristics, and soft breakdown free phenomena for the stack dielectrics (reported previously), the almost equal effective mobility (with respect to that of SiO/sub 2/ dielectrics) has ensured the proposed stack gate dielectrics to be very promising for sub-100-nm technology generations.  相似文献   

9.
Type-II InP/GaAsSb double heterojunction bipolar transistors (DHBTs) were fabricated and microwave power performance was measured. For an InP collector thickness of 150 nm, the DHBTs show a current gain of 24, low offset voltages, and a BV/sub CEO/>6V. The 1.2/spl times/16 /spl mu/m/sup 2/ devices show f/sub T/=205GHz and f/sub MAX/=106GHz at J/sub C/=304 kA/cm/sup 2/. These devices delivered 12.6 dBm to the load at P/sub AVS/=3.3 dBm operating at 10 GHz, yielding a power-added efficiency of 41% and G/sub T/=9.3 dB.  相似文献   

10.
Si/SiGe n-type modulation-doped field-effect transistors grown on a very thin strain-relieved Si/sub 0.69/Ge/sub 0.31/ buffer on top of a Si(100) substrate were fabricated and characterized. This novel type of virtual substrate has been created by means of a high dose He ion implantation localized beneath a 95-nm-thick pseudomorphic SiGe layer on Si followed by a strain relaxing annealing step at 850/spl deg/C. The layers were grown by molecular beam epitaxy. Electron mobilities of 1415 cm/sup 2//Vs and 5270 cm/sup 2//Vs were measured at room temperature and 77 K, respectively, at a sheet carrier density of about 3/spl times/10/sup 12//cm/sup 2/. The fabricated transistors with Pt-Schottky gates showed good dc characteristics with a drain current of 330 mA/mm and a transconductance of 200 mS/mm. Cutoff frequencies of f/sub t/=49 GHz and f/sub max/=95 GHz at 100 nm gate length were obtained which are quite close to the figures of merit of a control sample grown on a conventional, thick Si/sub 0.7/Ge/sub 0.3/ buffer.  相似文献   

11.
InP-based single heterojunction bipolar transistors (SHBTs) for high-speed circuit applications were developed. Typical common emitter DC current gain (/spl beta/) and BV/sub CEO/ were about 17 and 10 V, respectively. Maximum extrapolated f/sub max/ of 478 GHz with f/sub T/ of 154 GHz was achieved for 0.5 /spl times/ 10 /spl mu/m/sup 2/ emitter size devices at 300 kA/cm/sup 2/ collector current density and 1.5 V collector bias. This is the highest f/sub max/ ever reported for any nontransferred substrate HBTs, as far as the authors know. This paper highlights the optimized conventional process, and the authors have great hopes for the process that offers inherent advantages for the direct implementation to high-speed electronic circuit fabrication.  相似文献   

12.
This letter presents a low-temperature process to fabricate Schottky-barrier silicide source/drain transistors (SSDTs) with high-/spl kappa/ gate dielectric and metal gate. For p-channel SSDTs (P-SSDT) using PtSi sourece/drain (S/D) , excellent electrical performance of I/sub on//I/sub off//spl sim/10/sup 7/-10/sup 8/ and subthreshold slope of 66 mV/dec have been achieved. For n-channel SSDTs (N-SSDTs) using DySi/sub 2-x/ S/D , I/sub on//I/sub off/ can reach /spl sim/10/sup 5/ at V/sub ds/ of 0.2 V with two subthreshold slopes of 80 and 340 mV/dec. The low-temperature process relaxes the thermal budget of high-/spl kappa/ dielectric and metal-gate materials to be used in the future generation CMOS technology.  相似文献   

13.
Type-II InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) with a 15-nm base were fabricated by contact lithography: 0.73/spl times/11 /spl mu/m/sup 2/ emitter devices feature f/sub T/=384GHz (f/sub MAX/=262GHz) and BV/sub CEO/=6V. This is the highest f/sub T/ ever reported for InP/GaAsSb DHBTs, and an "all-technology" record f/sub T//spl times/BV/sub CEO/ product of 2304 GHz/spl middot/V. This result is credited to the favorable scaling of InP/GaAsSb/InP DHBT breakdown voltages (BV/sub CEO/) in thin collector structures.  相似文献   

14.
Vertical scaling of the epitaxial structure has allowed submicron InP/InGaAs-based single heterojunction bipolar transistors (SHBTs) to achieve record high-frequency performance. The 0.25/spl times/16 /spl mu/m/sup 2/ transistors, featuring a 25-nm base and a 100-nm collector, display current gain cut-off frequencies f/sub T/ of 452 GHz. The devices operate at current densities above 1000 kA/cm/sup 2/ and have BV/sub CEO/ breakdowns of 2.1 V. A detailed analysis of device radio frequency (RF) parameters, and delay components with respect to scaling of the collector thickness is presented.  相似文献   

15.
The selectively implanted buried subcollector (SIBS) is a method to decouple the intrinsic and extrinsic C/sub BC/ of InP-based double-heterojunction bipolar transistors (DHBTs). Similar to the selectively implanted collector (SIC) used in Si-based bipolar junction transistors (BJTs) and HBTs, ion implantation is used to create a N+ region in the collector directly under the emitter. By moving the subcollector boundary closer to the BC junction, SIBS allows the intrinsic collector to be thin, reducing /spl tau//sub C/, while simultaneously allowing the extrinsic collector to be thick, reducing C/sub BC/. For a 0.35 /spl times/ 6 /spl mu/m/sup 2/ emitter InP-based DHBT with a SIBS, 6 fF total C/sub BC/ and >6 V BV/sub CBO/ were obtained with a 110-nm intrinsic collector thickness. A maximum f/sub T/ of 252 GHz and f/sub MAX/ of 283 GHz were obtained at a V/sub CE/ of 1.6 V and I/sub C/ of 7.52 mA. Despite ion implantation and materials regrowth during device fabrication, a base and collector current ideality factor of /spl sim/2.0 and /spl sim/1.4, respectively, at an I/sub C/ of 100 /spl mu/A, and a peak dc /spl beta/ of 36 were measured.  相似文献   

16.
GaN-based field effect transistors commonly include an Al/sub x/Ga/sub 1-x/N barrier layer for confinement of a two-dimensional electron gas (2DEG) in the barrier/GaN interface. Some of the limitations of the Al/sub x/Ga/sub 1-x/N-GaN heterostructure can be, in principle, avoided by the use of In/sub x/Al/sub 1-x/N as an alternative barrier, which adds flexibility to the engineering of the polarization-induced charges by using tensile or compressive strain through varying the value of x. Here, the implementation and electrical characterization of an In/sub x/Al/sub 1-x/-GaN high electron mobility transistor with Indium content ranging from x=0.04 to x=0.15 is described. The measured 2DEG carrier concentration in the In/sub 0.04/Al/sub 0.96/N-GaN heterostructure reach 4/spl times/10/sup 13/ cm/sup -2/ at room temperature, and Hall mobility is 480 and 750 cm/sup 2//V /spl middot/ s at 300 and 10 K, respectively. The increase of Indium content in the barrier results in a shift of the transistor threshold voltage and of the peak transconductance toward positive gate values, as well as a decrease in the drain current. This is consistent with the reduction in polarization difference between GaN and In/sub x/Al/sub 1-x/N. Devices with a gate length of 0.7 /spl mu/m exhibit f/sub t/ and f/sub max/ values of 13 and 11 GHz, respectively.  相似文献   

17.
High performance InP/InGaAs double heterojunction bipolar transistors (DHBTs) incorporating carbon-doped bases and graded base-collector junctions implemented using a short period superlattice were grown by gas source MBE (GSMBE). Base hole concentrations up to 1.6*10/sup 19/ cm/sup -3/ were obtained, using CCl/sub 4/ as the dopant source. Transistors with 2*10 mu m/sup 2/ emitters achieved f/sub t/ and f/sub max/ values up to 76 and 82 GHz, respectively. These devices demonstrate state of the art values of f/sub max/.<>  相似文献   

18.
We report on the performance of abrupt InP-GaInAs-InP double heterojunction bipolar transistors (DHBTs) with a thin heavily doped n-type InP layer at the base-collector interface. The energy barrier between the base and the collector was fully eliminated by a 4-nm-thick silicon doped layer with N/sub D/=3/spl times/10/sup 19/ cm/sup -3/. The obtained f/sub T/ and f/sub MAX/ values at a current density of 1 mA//spl mu/m/sup 2/ are comparable to the values reported for DHBTs with a grade layer between the base and the collector.  相似文献   

19.
A novel Bi-MOS technology, Advanced Bipolar CMOS (ABC), is proposed. Bipolar transistors (n-p-n, p-n-p, I/sup 2/L)and MOS transistors (both n- and p-channel) have been successfully fabricated on the same chip with no decrease in performance by using a 3-/spl mu/m design rule. Thin epitaxial layer (<= 2 /spl mu/m) is used in order to obtain small-size high-performance (3-GHz) bipolar devices. Device size is reduced by using a shallow junction and self-aligning technique. n-channel MOS transistors are formed in p-well regions designed to reach p-type substrate, and p-channel MOS transistors are formed in epitaxial layer with an n/sup +/ buried layer. This technology has the potential for monolithic multifunctional analog-digital VLSI.  相似文献   

20.
We report, to our knowledge, the best high-temperature characteristics and thermal stability of a novel /spl delta/-doped In/sub 0.425/Al/sub 0.575/As--In/sub 0.65/Ga/sub 0.35/As--GaAs metamorphic high-electron mobility transistor. High-temperature device characteristics, including extrinsic transconductance (g/sub m/), drain saturation current density (I/sub DSS/), on/off-state breakdown voltages (BV/sub on//BV/sub GD/), turn-on voltage (V/sub on/), and the gate-voltage swing have been extensively investigated for the gate dimensions of 0.65/spl times/200 /spl mu/m/sup 2/. The cutoff frequency (f/sub T/) and maximum oscillation frequency (f/sub max/), at 300 K, are 55.4 and 77.5 GHz at V/sub DS/=2 V, respectively. Moreover, the distinguished positive thermal threshold coefficient (/spl part/V/sub th///spl part/T) is superiorly as low as to 0.45 mV/K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号