首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用微细煤焦再燃还原NO的反应机理   总被引:1,自引:0,他引:1  
刘忠  阎维平  赵莉  宋蔷  姚强 《动力工程》2007,27(6):964-968
以3种细度的混煤煤焦作为再燃燃料,用N2、O2、CO2和NO配制模拟烟气,在1200℃、1300℃和1400℃立管式携带炉中进行了再燃还原NO的实验研究,对其化学反应机理进行了分析.结果表明:微细化煤焦再燃还原NO的反应速率受扩散-反应动力学的联合控制.因此,提高再燃区温度水平、使用反应活性高的煤焦或提高再燃煤焦的细度,均能明显提高再燃还原NO的化学反应速率.  相似文献   

2.
温度对超细煤粉再燃降低NO排放的影响   总被引:10,自引:0,他引:10  
赵莉  阎维平  刘忠  高正阳 《动力工程》2005,25(6):887-890
超细煤粉再燃技术是控制燃煤电站NOx排放的有效方法之一。以3种煤的超细煤粉作为再燃燃料,用N2、O2、CO2、NO配制模拟烟气,在立式管携带炉中,研究了温度对再燃降低NO排放的影响。结果表明,在实验温度范围内,随着再燃区温度的增加,再燃还原NO的效果增大;对于挥发份含量较高的超细煤粉,再燃还原NO的效果受温度的影响更大;对于同一煤种,再燃还原NO的效果受温度的影响随再燃料比增加而增大。采用化学动力学理论对这种影响机制进行了分析。图2表1参6  相似文献   

3.
以超细煤粉制作的煤焦作为再燃燃料,用N2、O2、CO2、NO配制模拟烟气,在立式管式携带炉中,研究了温度对再燃降低NO效率的影响。结果表明,在实验温度范围内,随着再燃区温度的增加,再燃还原NO效率增大,化学动力学是控制超细煤粉再燃还原NO化学反应速率的重要因素;提高再燃区温度可以适当缩短停留时间,但不能低于0.6 s,否则NO还原效率会大幅度下降,同时燃尽率也会下降;在煤粉再燃过程中,煤焦再燃还原NO占有重要地位。  相似文献   

4.
为分析再燃区温度、污泥含水率、过量空气系数和停留时间对污泥再燃脱硝特性的影响,对污泥再燃脱硝特性进行试验研究。采用配气法模拟流化床锅炉燃烧产生的烟气,使用污泥颗粒作为再燃燃料,通过立式管式炉进行再燃试验。结果表明:在再燃区温度为850~950℃时,随着再燃区温度升高,NO和N_2O的还原率均升高;水分对NO和N_2O的还原机理影响不同,含水率为10%~15%时,NO_x的还原率较高;在过量空气系数为0. 7~1. 0时,随过量空气系数升高,NO和N_2O的还原率减小;在停留时间为0. 45~0. 7 s时,随停留时间增大,NO和N_2O的还原率增大。  相似文献   

5.
以等离子体煤制气作为再燃气体,在一维加热炉试验系统上研究了再燃区温度、再燃区停留时间、再燃燃料比例、主烟气含氧量、再燃气体组分份额等因素对再燃降低NO_x排放的影响规律。试验结果表明:还原NO_x效率随着再燃燃料比的增大而提高;随着主烟气含氧量的增大而降低;随着反应温度的升高而提高,当温度升高一定程度时,存在热力型NO_x的生成;提高再燃区的停留时间有利于NO_x的降低,其最佳停留时间为0.6 s,研究结果为等离子体煤制气还原NO_x技术应用提供了研究基础和技术支撑。  相似文献   

6.
用数值模拟的方法研究了柴油机稀燃NO_x捕集技术(LNT)浓燃再生过程中CO还原NO的反应过程.建立了铂(Pt)催化剂表面CO还原NO的详细化学反应机理模型,该机理包括5种气相组分、5种表面组分和11步基元反应,其中包含了CO_2、N_2和副产物N_2O的生成路径.对反应器出口各主要组分摩尔分数随温度的变化情况进行了模拟,其结果与文献中的试验数据吻合良好.CO和NO的反应开始于250,℃左右,N_2O为低温区间的主要产物;300,℃时,N_2开始生成,并逐渐取代N_2O成为主要产物.分析了生成N_2的两条反应路径,结果表明:当温度低于330,℃时,N原子重组路径占主导;而温度高于330,℃时,N_2O分解路径占主导.此外,预测了CO摩尔分数对CO和NO转化率的影响,证明了CO自抑制效应,即随着CO摩尔分数的增加NO转化率先升高后降低.  相似文献   

7.
焦油对生物质气化再燃还原NO的影响   总被引:2,自引:0,他引:2  
采用配制含焦油模型化合物的生物质气的方法,实验研究了焦油的加入对生物质气化再燃还原NO的影响.模拟的生物质气化气由H2、CH4、CO、CO2、N2构成,并选择了苯、甲苯、苯酚和苯乙烯作为焦油模型化合物.实验在电加热的刚玉管流反应器中进行,实验温度在900~1,400,℃之间.研究了反应器入口焦油含量、氧气浓度、NO初始浓度、反应停留时间及反应温度等因素对还原NO的影响,分析了含焦油的生物质气化再燃特性.证实了焦油有助于提高生物质气化气还原NO的效率;含焦油的生物质气化再燃的最佳当量比在1.20~1.65之间,并且随着NO初始浓度的增加及停留时间的延长,NO还原效率逐渐增加;高温下,焦油含量较高时,有炭黑生成.  相似文献   

8.
根据50 kW下行燃烧炉中燃烧过程中的NO和N_2O生成及还原规律,采用高温固定床模拟了空气分级燃烧过程的还原及燃尽阶段的气氛对N_2O高温分解及对NO生成影响的实验,测量了多种气氛模拟工况下的N_2O高温分解等特性,得到了N_2O高温分解及对NO生成转化的影响规律.实验结果显示,在CO+O_2+平衡气的气氛条件下,N_2O分解生成大量NO,有别于传统的N_2O分解理论.利用基于MB89机理的化学动力学模拟方法模拟了对应气氛下N_2O分解规律及产物特性,分析N_2O分解生成NO的基元反应.根据模拟结果发现,生成的大量NO一是来源于CO燃烧产生大量的O自由基与N_2O反应的产物,二是N_2O逆向生成的NCO进一步分解成NO.  相似文献   

9.
以甲烷掺混氨气为燃料对oxy-steam气氛下NO生成特性进行实验和模拟研究.在常压柱塞流反应器中开展了一系列O_2/N_2和O_2/H_2O气氛的对比实验,当量比从富燃至贫燃(1.6、1.0、0.2),温度范围为973~1,773,K.实验结果表明,O2/H_2O气氛下高浓度的水蒸气在当量和贫燃工况下抑制NO的生成,而在富燃工况下促进NO生成.更新并构建的详细化学机理能够很好地重现并解释实验中NO的生成特性.当量和贫燃工况下,极少的O基团抑制了反应NH_2+O H+HNO从而抑制了NH_2→HNO→NO反应路径,最终降低了NO的生成.富燃工况下,充足的OH基团显著促进了反应NH_2+OH=NH+H_2O从而促进了NH_2→NH→HNO→NO反应路径,最终增加了NO的生成.  相似文献   

10.
卢平  徐生荣  祝秀明 《动力工程》2008,28(1):122-127
利用高温携带流反应装置,研究了煤种(包括褐煤、烟煤和贫煤)、再燃区内反应温度、煤粉粒径、一次燃烧区空气过量系数SR1和再燃区空气过量系数SR2对煤焦异相还原NO作用的影响,探讨了煤焦异相还原NO的机理.结果表明:随着SR2和煤粉粒径的减小以及再燃区反应温度的提高,煤粉NO还原效率增加;在相同的SR2下,随着煤中挥发分含量的提高,煤粉粒径的增加和再燃区反应温度的降低,煤焦异相还原NO贡献上升;对于相同再燃燃料份额:SR1=1.0和SR1=1.2时煤焦异相还原NO的贡献均大于SR1=1.1时的异相还原NO的贡献.  相似文献   

11.
采用Chemkin 4.1化学动力学软件,基于Dryer正庚烷燃烧机理(116种组分,754个基元反应)和零维定容闭式均相反应器模型,并结合敏感性分析方法模拟计算了不同CO_2浓度下,着火延迟随温度(1 150~1 450 K)、当量比(0.5~1.5)、压力(1~10 atm)的变化,分析CO_2浓度对着火延迟的影响。计算结果表明:随CO_2浓度增加,着火延迟时间增大。不同CO_2浓度对着火延迟时间的影响随温度降低逐渐减弱,随压力升高逐渐较弱,随当量比增大变化不大。温度是影响着火的关键因素。反应1、115、114、171是影响着火的关键基元反应,HO2为影响着火的关键组分。CO_2影响着火延迟主要是通过物理作用,化学作用影响不大。  相似文献   

12.
利用ASEPN PLUS流程模拟软件对富氧燃烧氛围下纯煤掺烧生物质时污染物的排放特性进行了模拟分析,结果表明:在掺烧比例一定时,富氧燃烧氛围下烟气中NO_x和SO_x排放浓度远低于常规空气燃烧氛围下的值,而CO的排放浓度显著高于常规空气燃烧氛围的值,且随O_2浓度的提高,NO_x和SO_x的排放浓度逐渐增加,CO的排放浓度逐渐降低;在O_2浓度一定时,燃烧温度对CO的排放浓度影响很大,当温度超过1 200℃以后,CO的排放浓度急剧上升,NO_x的排放浓度随燃烧温度的升高而增加,SO_x的排放浓度受燃烧温度影响不大,随燃烧温度的升高略有增加。  相似文献   

13.
针对某1 000MW超超临界机组的选择性催化还原反应系统,采用数值计算与试验结合的方法研究了该机组选择性催化还原脱硝的性能。建立了燃煤机组燃烧后脱硝系统液氨蒸发器蒸汽质量流量模型;研究了脱硝效率对NH_3质量流量和蒸汽质量流量的影响,入口NO质量浓度对脱硝效率的影响,以及NH_3与NO_x物质的量比、氧气体积分数和反应温度对脱硝效率和SO_2/SO_3转化率的影响。结果表明:脱硝的温度范围为360~370℃,最佳反应温度为367℃;当脱硝效率为80%时,NH_3质量流量和蒸汽质量流量分别为446kg/h和275kg/h;脱硝效率随入口NO质量浓度的升高而提高;当NH_3与NO_x物质的量比为1时,脱硝效率为95.3%,为保证脱硝效率及氨逃逸率,NH_3与NO_x物质的量比应控制在1~1.2;随着氧气体积分数的提高,脱硝效率降低,而SO_2/SO_3转化率增大。  相似文献   

14.
采用数值模拟方法研究了当量比对环管型燃烧室内燃烧及NO_x生成特性的影响,分析了不同当量比时燃烧室内流场、温度场、热力型NO_x生成速率分布、出口温度分布系数(OTDF)及出口NO_x浓度的变化。模拟过程中,保持空气量不变,通过调整入口甲烷量来改变当量比。研究表明:增大当量比,燃烧室内燃烧反应速率加快,轴向速度升高,高温区域沿径向扩张,其范围明显扩大,热力型NO_x生成速率加快,其高速率范围与高温区域重合,出口NO_x浓度上升,而OTDF始终处于合理范围内。因此,在当量比为0.48~0.54范围内,适当降低当量比有利于控制出口NO_x浓度。  相似文献   

15.
为满足锅炉岛污染物排放标准的要求,降低锅炉岛系统投资和运行成本,通过控制炉膛温度,减小床料粒径,优化床料质量,增大循环流率,扩充贫氧区,抑制NO、SO_2生成,提高局部CO浓度和CaO的固硫率,对流态重构循环流化床锅炉进行了超低排放优化设计。锅炉的实际运行试验结果表明,所开发的循环流化床锅炉烟气中NO_x、SO_x初始排放浓度小于或接近于锅炉岛超低排放值。  相似文献   

16.
对用烃类和氨为还原剂的脱硝技术的计算分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用Chemkin 4.0软件包中基状流反应器和Miller等人的化学动力学模型,对再燃、先进再燃、选择性非催化还原(SNCR)以及加入烃类的SNCR反应的原理进行了模拟计算和比较分析,研究了不同反应温度、再燃燃料比和停留时间对脱硝效率的影响。计算结果表明,先进再燃引入氨基还原剂,可以拓宽脱硝的有效温度区间,加快反应速率,提高脱硝效率约20%,优于常规再燃技术;SNCR反应中加入很少量烃类(烃/NO〈1)可以增加其有效的脱硝温度范围,加快脱硝反应速率,使完成脱硝反应所需时间缩短一半,在较低的反应温度下达到较高的脱硝效率;而先进再燃达到相当的脱硝率则需要消耗超过15%的再燃燃料。  相似文献   

17.
再燃技术被认为是最有效降低NOx排放的技术之一.以地下煤气气源作为再燃燃料,研究温度1000~1400 ℃及再燃区入口氧含量2%~10%对煤气还原NOx的影响.探讨了一个适用于煤气再燃还原NOx的化学反应机理(200个反应46种物质);利用该机理进行模拟,并结合已有实验数据进行对比分析.结果表明:温度为1000~1200 ℃时,煤气还原氮氧化物存在一个最佳再燃区入口氧含量,随着温度的升高,最佳入口氧含量减少;温度为1300~1400 ℃时,在较低的再燃区入口氧量条件下,煤气对NO的脱除率较高.  相似文献   

18.
利用化学反应动力学计算研究燃煤锅炉的选择性非催化还原(SNCR)对于气相中SO_3生成过程的影响,并进一步考虑喷氨位置、氨氮比与SO_3脱除率的关系。结果表明:SNCR对于SO_3具有一定脱除作用,这主要是由于喷氨后,通过相关基元反应使得自由基H和HO_2的浓度变大,进而抑制或分解SO_3的缘故。随着氨氮比增加,SO_3脱除率升高,当氨氮比为1.2,在烟气温度约1 000℃位置处喷氨时SO_3脱除效果最佳。  相似文献   

19.
郑守忠  卢平 《锅炉技术》2008,39(2):58-62
在携带流反应装置中测量了再燃条件下煤粉在高温烟气环境中迅速热解时的质量损失,通过扫描电镜观察和分析了煤焦的显微结构;分析了煤种、热解温度、热解气氛和煤粉粒径等因素对煤粉热解特性的影响;探讨了煤焦形成条件对NO还原的影响.结果表明,随着煤的挥发分含量增加,煤的质量损失份额和煤焦还原NO的能力增加;热解温度升高,将导致煤焦还原NO能力下降;在一次燃烧区空气过量系数SR1=1.0~1.2范围内,煤粉质量损失变化不大.  相似文献   

20.
在淮南烟煤中浸渍添加尿素和NH_4(SO_3)_2,研究再燃燃料氮含量对再燃脱硝效果的影响.煤粉再燃实验在石英固定床反应器上进行,温度范围为800~1200℃.使烟气中O_2的体积分数为2.5%~3.5%,CO_2的体积分数为17%~18%,NO的体积分数为460×10~(-6)左右,其余为氩气,模拟再燃区入口烟气.研究发现,再燃煤粉中添加的氮还原剂,以及再燃区的工况条件都对再燃脱硝率有很大影响.添加氮还原剂后,再燃脱硝的效果都有所提高,脱硝率最高能达56%.添加剂的增效随温度的上升而下降,而随着添加剂量的升高和烟气中氧含量的降低,脱硝效果升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号