共查询到20条相似文献,搜索用时 10 毫秒
1.
一种基于频繁序列树的增量式序列模式挖掘算法 总被引:1,自引:0,他引:1
针对目前现有的增量式序列模式挖掘算法没有充分利用先前的挖掘结果,当数据库更新时,需要对数据库进行重复挖掘的问题。本文提出一种基于频繁序列树的增量式序列模式挖掘算法(ISFST),ISFST采用频繁序列树作为序列存储结构,当数据库发生变化时,ISFST算法分两种情况对频繁序列树进行更新操作,通过遍历频繁序列树得到满足最小支持度的所有序列模式。实验结果表明,ISFST算法在时间性能上优于PrefixSpan算法和IncSpan算法。 相似文献
2.
不产生候选的快速投影频繁模式树挖掘算法 总被引:8,自引:0,他引:8
1.概述近年来,对事务数据库、时序数据库和各种其它类型数据库中的频繁模式挖掘的研究越来越普及。许多先前的研究都是采用Apriori或类似的候选产生—检查迭代算法,使用候选项集来找频繁项集。这些算法都基于一种重要的反单调的Apriori性质:任何非频繁的(k—1)-项集都不可能是频繁k-项集的子集。因此,如果一个候选k-项集的(k—1)-子集不在频繁(k—1)-项集中,则该候选也不可能是频繁的,从而可 相似文献
3.
随着频繁模式挖掘的深入研究,图模型被广泛地应用于为各种事务建模,因此图挖掘的研究显得越来越重要.文中针对唯一标识的有向连通图模型,基于频繁模式树结构,改进了频繁模式增长算法挖掘频繁连通闭合子图.使用生物代谢路径数据集的实验证明,这种算法能有效地挖掘出唯一标识的有向连通图集中的频繁闭图集,一次运算可以挖掘出多个阈值的最大频繁子图集.这种算法适用于以唯一标识的有向连通图建模的网络或图集,可以应用到基于图简化模型的生物网络的子图挖掘任务中. 相似文献
4.
频繁模式挖掘是数据挖掘领域中很重要的一部分.目前,出现了许多基于约束的频繁模式挖掘算法和交互式算法,但把两者结合起来的算法却很少.提出了一种基于约束的交互式频繁模式挖掘算法IMCFP(interactive mining of constraint-based frequent patterns).首先该算法按照约束的性质来建立频繁模式树,并且只需扫描一遍数据库;然后建立每个项的条件树,挖掘以该项为前缀的最大频繁模式,并用最大频繁模式树来存储;最后根据最大模式来找出所有的支持度明确的频繁模式.另外,该算法允许用户在挖掘过程中动态地改变约束.实验表明,该算法与iCFP算法相比是很有效的. 相似文献
5.
提出了同时适用于一维和多维序列数据的统一存储结构——编码频繁模式树(CFP-tree),并通过渐进的前缀序列搜索方式来发现频繁序列模式,避免了在挖掘过程中递归地产生大量的中间子序列。实验证明,该算法在大规模数据的处理上比现有序列模式挖掘算法有更好的性能。 相似文献
6.
基于频繁模式树的分布式关联规则挖掘算法 总被引:1,自引:0,他引:1
提出一种基于频繁模式树的分布式关联规则挖掘算法(DMARF).DMARF算法设置了中心结点,利用局部频繁模式树让各计算机结点快速获取局部频繁项集,然后与中心结点交互实现数据汇总,最终获得全局频繁项集.DMARF算法采用顶部和底部策略,能大幅减少候选项集,降低通信量.理论分析和实验结果均表明了DMARF算法是快速而有效的. 相似文献
7.
8.
9.
10.
提出一种基于静态IS-树的频繁模式挖掘有效算法IS-mine,并与经典的Apriori算法和FP-growth算法进行了实验比较.算法直接构造频繁项集,不进行Apriori算法采用的代价较高的候选集产生与测试操作.算法采用深度优先,模式增长的策略,挖掘任务只在一棵静态的IS-树上进行,避免了FP-growth算法所采用的代价较高的动态树的构建.针对不同特征数据集算法采取不同的过滤技术来缩小搜索空间.实验与理论分析表明,对于稠密和稀疏数据两类数据集,算法都具有较好的时空效率. 相似文献
11.
现有的增量式挖掘算法在支持度发生变化时,需要对序列数据库进行重复挖掘,为减少由此产生的时空消耗,提出一种高效的增量式序列模式挖掘算法。算法采用频繁序列树作为序列存储结构,当序列数据库和最小支持度发生变化时,通过执行更新操作,实现频繁序列树的更新,利用深度优先遍历频繁序列树找到序列数据库中所有的序列模式。实验结果表明,与IncSpan算法和PrefixSpan算法相比,该算法的挖掘效率较高。 相似文献
12.
基于逆向FP-树的频繁模式挖掘算法 总被引:8,自引:0,他引:8
提出了一种称为逆向FP 合并的算法,该算法逆向构造FP 树并通过在其中寻找频繁扩展项集与合并子树来挖掘频繁模式。新算法在时空效率方面均优于FP 增长算法,其中时间效率提高了2倍以上。此外,新算法还具有良好的伸缩性。 相似文献
13.
14.
针对当数据集含有敏感信息时,直接发布频繁序列模式本身及其支持度计数都有可能泄露用户隐私信息的问题,提出一种满足差分隐私(DP)的频繁序列模式挖掘(DP-FSM)算法。该算法利用向下封闭性质生成候选序列模式集,基于智能截断方法从候选模式中挑选出频繁的序列模式,最后采用几何机制对所选出模式的真实支持度添加噪声进行扰动。另外,为了提高挖掘结果的可用性,设计了一个阈值修正的策略来减小挖掘过程中的截断误差和传播误差。理论分析证明了该算法满足ε-差分隐私。实验结果表明了该算法在拒真率(FNR)和相对支持度误差(RSE)两个指标上明显低于对比算法PFS2,有效地提高了挖掘结果的准确度。 相似文献
15.
基于FP-tree的最大频繁模式挖掘算法 总被引:11,自引:0,他引:11
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。 相似文献
16.
针对现有的频繁模式挖掘算法存在建树复杂、挖掘效率低等问题,提出一种基于构造链表(B-list)的频繁模式挖掘(BLFPM)算法。BLFPM使用一种新的数据结构B-list表示频繁项集,通过连接两个k-1-频繁项集的B-list可以快速得到k-项集的支持度,避免了多次扫描数据库;针对连接两个B-list时间复杂度高的问题,给出了一种线性时间复杂度的连接方法,提高了BLFPM的时间效率;同时,BLFPM采用集合枚举树代表搜索空间,并使用子集非频繁剪枝策略,减小了频繁模式挖掘的搜索空间,提高了算法的执行速度。实验结果表明,与NSFI算法和prepost算法相比,BLFPM的时间效率提高约12%到29%,空间效率提高约10%到24%,对稀疏数据库或稠密数据库进行频繁模式挖掘均可以得到良好的效果。 相似文献
17.
模式树是目前频繁项集挖掘最常用的数据结构,使用模式树可以有效地将数据库压缩于内存,并在内存中完成对频繁项集的挖掘。为了进一步提高频繁项集挖掘算法的可扩展性,本文对模式树进行了细致的研究,在此基础上提出了一种挖掘频繁项集的新算法,FP-DFS算法。该算法通过对模式树的各种操作简化了对频繁项集的搜索过程。实验表明,该算法对于频繁项集挖掘具有比较高的效率。 相似文献
18.
基于索引数组和复合频繁模式树的频繁闭项集挖掘算法 总被引:1,自引:0,他引:1
频繁闭项集惟一确定频繁项集且规模小得多.CROP是一种基于复合频繁模式树的、频繁闭项集高效挖掘算法,但存在着候选结点过多的问题.这些非闭合结点的生成、检查和剪裁带来了大量不必要的操作.提出了一种改进的频繁闭项集挖掘算法CROP_Index.该算法用"索引数组"来组织数据,找到频繁共同出现的项集.基于二进制位图,给出了一个包含索引的计算方法,并利用索引启发信息合并,得到复合型频繁模式树的初始结点;同时给出一些新的性质,使得改进的算法只生成闭合结点,从而节省了大量不必要的操作,缩小了搜索空间.实验结果表明该算法效率较高. 相似文献
19.
基于FP树的全局最大频繁项集挖掘算法 总被引:12,自引:1,他引:12
挖掘最大频繁项集是多种数据挖掘应用了更新最大频繁候选项集集合,需要反复地扫描整个数据库,而且大部分算法是单机算法,全局最大频繁项集挖掘算法并不多见.为此提出MGMF算法,该算法利用FP-树结构,类似FP-树挖掘方法,一遍就可以挖掘出所有的最大频繁项集,并且超集检测非常简单、快捷.另外MGMF算法采用了分布式PDDM算法播报消息的思想,具有很好的拓展性和并行性.实验证明MGMF算法是有效可行的. 相似文献
20.
针对最大频繁项目集挖掘算法(DMFIA)当候选项目集维数高而最大频繁项目集维数较低的情况下要产生大量的候选项目集的缺点,提出了一种改进的基于频繁模式树(FP-tree)结构的最大频繁项目集挖掘算法--FP-MFIA。该算法根据FP-tree的项目头表,采用自底向上的搜索策略逐层挖掘最大频繁项目集,从而加速每次对候选集计数的操作。在挖掘时根据每层的条件模式基产生维数较低的非频繁项目集,尽早对候选项目集进行剪枝和降维,可大量减少候选项目集的数量。同时在挖掘时充分利用最大频繁项集的性质,减少搜索空间。通过算法在不同支持度下挖掘时间的对比可知,算法FP-MFIA在最小支持度较低的情况下时间效率是DMFIA以及基于降维的最大频繁模式挖掘算法(BDRFI)的2倍以上,说明FP-MFIA在候选集维数较高的时候优势明显。 相似文献