首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In principle, the application of monolithic catalysts to the Fischer–Tropsch synthesis can solve many of the problems related to the classical Fischer–Tropsch reactors, in particular concerning the necessity to operate with short diffusion distances and low pressure drops, preferably according to the ideal plug-flow behavior, while still maintaining a reasonable inventory of catalytic material in the reactor volume.The preparation of prototype cobalt-based catalysts, washcoated onto metallic structured supports with different geometries, is described herein, together with the evaluation of the catalytic properties of such systems in the Fischer–Tropsch synthesis at industrially relevant process conditions (220–235 °C, 20 bar, 2.1  molH2/molCO,  5000 cm3(STP)CO+H2/h/gcat). Comparative tests with the same catalyst in the powdered form were also carried out at the same process conditions.It was found that the structured catalysts maintained the activity and the selectivity of the original powdered catalyst, provided that the washcoat thickness is sufficiently thin.  相似文献   

2.
The water–gas shift (WGS) reaction is used to shift the CO/H2 ratio prior to Fischer–Tropsch synthesis and/or to increase H2 yield. A WGS membrane reactor was developed using a mixed protonic–electronic conducting SrCe0.9Eu0.1O3−δ membrane coated on a Ni–SrCeO3−δ support. The membrane reactor overcomes the thermodynamic equilibrium limitations. A 46% increase in CO conversion and total H2 yield was achieved at 900 °C under 3% CO and 6% H2O, resulting in a 92% single pass H2 production yield and 32% single pass yield of pure permeated H2.  相似文献   

3.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

4.
A microchannel catalytic reactor with improved heat and mass transport has been used for Fischer–Tropsch synthesis. It was demonstrated that this microchannel reactor based process can be carried out at gas hourly space velocity (GHSV) as high as 60,000 h−1 to achieve greater than 60% of single-pass CO conversion while maintaining relatively low methane selectivity (<10%) and high chain growth probability (>0.9). In this study, performance data were obtained over a wide range of pressure (10–35 atm) and hydrogen-to-carbon monoxide ratio (1–2.5). The catalytic materials were characterized using BET, scanning electron microcopy (SEM), transmission electron microcopy (TEM), and H2 chemisorption. A three-dimensional pseudo-homogeneous model was used to simulate temperature profiles in the exothermic reaction system in order to optimize the reactor design. Intraparticle non-isothermal characteristics are also analyzed for the FT synthesis catalyst.  相似文献   

5.
Catalytic light-off of a stream of NO, H2, CO in an excess O2 has been studied over various metal oxides loading 1 wt% Pt. Because a low-surface area Y2O3 (<5 m2 g−1) was found to exhibit the highest de-NOx activity, a mesoporous Y2O3 was then synthesized from an yttrium-based surfactant mesophase templated by dodecyl sulfate , which was anion-exchanged by acetate (AcO = CH3COO). The product showed a 3-D mesoporosity with a large surface area (396 m2 g−1) and the Pt-supported catalyst achieved much improved light-off characteristics suitable for the low-temperature de-NOx in the presence of CO and excess O2.  相似文献   

6.
Ru-based catalysts supported on Ta2O5–ZrO2 and Nb2O5–ZrO2 are studied in the partial oxidation of methane at 673–873 K. Supports with different Ta2O5 or Nb2O5 content were prepared by a sol–gel method, and RuCl3 and RuNO(NO3)3 were used as precursors to prepare the catalysts (ca. 2 wt.% Ru). At 673 K high selectivity to CO2 was found. An increase of temperature up to 773 K produced an increase in the selectivity to syngas (H2/CO = 2.2–3.1), and this is related with the transformation of RuO2 to metallic Ru as was determined from XRD and XPS results. At 873 K and with co-fed CO2 an increase of the catalytic activity and CO selectivity was found. A TOF value of 5.7 s−1 and H2/CO ratio ca. 1 was achieved over Ru(Cl)/6TaZr. Catalytic results are discussed as a function of the support composition and characteristics of Ru-based phases.  相似文献   

7.
A type of Pd–ZnO catalysts supported on multi-walled carbon nanotubes (MWCNTs) were developed, with excellent performance for CO2 hydrogenation to methanol. Under reaction conditions of 3.0 MPa and 523 K, the observed turnover-frequency of CO2 hydrogenation reached 1.15 × 10−2 s−1 over the 16%Pd0.1Zn1/CNTs(h-type). This value was 1.17 and 1.18 times that (0.98 × 10−2 and 0.97 × 10−2 s−1) of the 35%Pd0.1Zn1/AC and 20%Pd0.1Zn1/γ-Al2O3 catalysts with the respective optimal Pd0.1Zn1-loading. Using the MWCNTs in place of AC or γ-Al2O3 as the catalyst support displayed little change in the apparent activation energy for the CO2 hydrogenation, but led to an increase of surface concentration of the Pd0-species in the form of PdZn alloys, a kind of catalytically active Pd0-species closely associated with the methanol generation. On the other hand, the MWCNT-supported Pd–ZnO catalyst could reversibly adsorb a greater amount of hydrogen at temperatures ranging from room temperature to 623 K. This unique feature would help to generate a micro-environment with higher concentration of active H-adspecies at the surface of the functioning catalyst, thus increasing the rate of surface hydrogenation reactions. In comparison with the “Parallel-type (p-type)” MWCNTs, the “Herringbone-type (h-type)” MWCNTs possess more active surface (with more dangling bonds), and thus, higher capacity for adsorbing H2, which make their promoting action more remarkable.  相似文献   

8.
CuO–CeO2 is prepared by coprecipitation and ethanol washing and characterized using BET, HR-TEM, XRD and TPR techniques. The results show that CuO–CeO2 is nanosized (rTEM = 6.5 nm) and possesses high surface area (SBET = 138 m2 g−1). Furthermore, some lattice defects in the surface of CuO–CeO2 are found, which are beneficial to enhance catalytic performance of CuO–CeO2 in preferential oxidation of CO in excess hydrogen (PROX). Consequently, the nanostructured CuO–CeO2 exhibits perfect catalytic performance in PROX. Namely, CO content can be lowered to less than 100 ppm at 150 °C with 100% selectivity of O2 in the presence of 8% CO2 and 20% H2O at .  相似文献   

9.
γ-Al2O3 modified supports with bimodal pore-size distributions were prepared by the addition of different types of natural sepiolites (α or β) into alumina. The supports were characterized by nitrogen physisorption, mercury porosimetry, X-ray diffraction, HRTEM and DTA techniques. A wide range of SBET (94–238 m2 g− 1), pore volumes (0.3–0.82 cm3 g− 1), and pore sizes were obtained in the supports depending on the type of sepiolite and its concentration added into alumina. The pore sizes were distributed as follows: mesopores around 1.8 nm in radius, mesopores in the radius range 3.0–25 nm and macropores between 25 and 300 nm in radius. The shape of the pore-size distributions depended on the type of sepiolite: the modal peak for pores larger than 3.0 nm was broad with β-type sepiolites and narrow with α-type sepiolites. The mesopore and macropore sizes can be controlled by the type of sepiolite as well as its concentration added to alumina.  相似文献   

10.
The adsorption of CO on planar Au/TiO2 model catalysts was studied by polarization-modulation infrared reflection–absorption spectroscopy (PM-IRAS) under catalytically relevant pressure (10–50 mbar) and temperature (30–120 °C) conditions, both in pure CO and in CO/O2 reaction gas mixtures. The adsorption energy of CO on the Au particles was determined by a quantitative analysis of the temperature dependence of the CO absorption intensity in adsorption isobars. The data reveal considerable effects of the Au particle size when pure CO is used; the initial adsorption energy decreases from 74 kJ mol−1 (2 nm mean Au particle diameter) to 62 kJ mol−1 (4 nm). For CO/O2 gas mixtures, the initial CO adsorption energy is, irrespective of the Au particle size, constant at 63 kJ mol−1 (i.e., the CO adsorption energy is reduced for smaller Au particles), but this effect vanishes for larger Au particles.  相似文献   

11.
Cu–ZnO and Mn–Cu–ZnO catalysts have been prepared by electrodeposition and tested for the synthesis of higher alcohols via CO hydrogenation. The catalysts were prepared in the form of nanowires and nanotubes using a nanoporous polycarbonate membrane, which served as a template for the electrodeposition of the precursor metals from an aqueous electrolyte solution. Electrodeposition was carried out using variable amounts of Zn(NO3)2, Cu(NO3)2, Mn(NO3)2 and NH4NO3 at different galvanostatic conditions. A fixed bed reactor was used to study the reaction of CO and H2 to produce alcohols at 270 °C, 10–20 bar, H2/CO = 2/1, and 10,000–33,000 scc/h gcat. In addition to methane and CO2, methanol was the main alcohol product. The addition of manganese to the Cu–ZnO catalyst increased the selectivity toward higher alcohols by reducing methane formation; however, CO2 selectivity remained high. Maximum ethanol selectivity was 5.5%, measured as carbon efficiency.  相似文献   

12.
It has been suggested that the behavior of Group VIII metal catalysts supported on transition metal oxides can be significantly affected by pretreatment conditions due to strong metal–oxide interactions (SMOI). However, the origins for the SMOI effect are still in debate. In this research, SMOI of Rh and vanadium oxide (as a promoter) supported on SiO2 were studied at the site level for the first time, which provides an insight into the modification of surface properties after high temperature reduction. H2 chemisorption, Fischer–Tropsch synthesis (FTS), and SSITKA (steady-state isotopic transient kinetic analysis) were used to probe the SMOI effects. The catalytic properties of the catalysts for CO hydrogenation were investigated using a differential fixed bed reactor at 230 °C and 1.8 atm, while for SSITKA, a reaction temperature of 280 °C and an excess of H2 was used to maximize methane production. The addition of V to Rh/SiO2 suppresses H2 chemisorption, and high reduction temperature further decreases H2 chemisorption on Rh/V/SiO2 but has little effect on Rh/SiO2. As reduction temperature increases, the activity for CO hydrogenation on Rh/SiO2 remains essentially unchanged, but the activity of Rh/V/SiO2 decreases significantly. SSITKA shows that the concentration of surface reaction intermediates decreases on Rh/V/SiO2 as the reduction temperature increases, but the activities of the reaction sites increase. The results suggest that Rh being covered by VOx species is probably the main reason for the decreased overall activity induced by high reduction temperature, but more active sites appear to be formed probably at the Rh–VOx interface.  相似文献   

13.
Scanning electron microscopy (SEM), electron-probe microanalysis, energy- and wavelength-dispersive X-ray analysis and X-ray powder diffraction were used to investigate the subsolidus phase relations in the pseudo-ternary La2O3–TiO2–Mn2O3 system in air (oxygen partial pressure pO2=0.21   atm) at 1275 °C. The addition of Mn2O3 to the starting La2O3:3TiO2 mixture led to the formation of a La-deficient perovskite La2/3TiO3 compound. The oxides form two new compounds with the proposed compositions: (i) La1.7Ti13.0Mn6.3O38−x, with a davidite-like crystal structure, and (ii) La49Ti18Mn13O129. There were also several solid solutions existing over a wide range of concentrations.  相似文献   

14.
A series of precipitated Fe/Mn Fischer–Tropsch synthesis (FTS) catalysts incorporated with calcium promoter were prepared by the combination of co-precipitation and spray-drying technology. The catalysts were characterized by using N2 physisorption, CO2 temperature-programmed desorption and Mössbauer spectroscopy methods. FTS performances of the catalysts were tested in a 1 dm3 continuous stirred tank reactor. It is found that calcium promoter has negligible effect on the textural properties, and the addition of calcium promoter can enhance the surface basicity of the catalyst. An appropriate amount of calcium promoter can promote the reduction and carburization of the catalysts during the reduction and Fischer–Tropsch synthesis (FTS) reaction in syngas, but the excessive addition of calcium promoter will decrease the extent of reduction and carburization. The reaction results indicated that the activities of both FTS and water-gas shift (WGS) decrease with the incorporation of calcium promoter. Calcium promoter can inhibit the hydrogenation ability, suppress the formation of methane, and enhance the selectivities to olefin and higher molecular weight products.  相似文献   

15.
The effects of promotion with ruthenium on the structure of cobalt catalysts and their performance in Fischer–Tropsch synthesis were studied using MCM-41 and SBA-15 as catalytic supports. The catalysts were characterized by N2 physisorption, H2-temperature programmed reduction, in situ magnetic measurements, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that monometallic cobalt catalysts supported by smaller pore mesoporous silicas (dp = 3–4 nm) had much lower activity in Fischer–Tropsch synthesis than their larger pore counterparts (dp = 5–6 nm). Promotion with ruthenium of smaller pore cobalt catalysts led to a considerable increase in Fischer–Tropsch reaction rate, while the effect of the promotion with ruthenium was less significant with the catalysts supported by larger pore silicas.Characterizations of smaller pore cobalt catalysts revealed strong impact of ruthenium promotion on the repartition of cobalt between reducible Co3O4 phase and barely reducible amorphous cobalt silicate in the calcined catalyst precursors. Smaller pore monometallic cobalt catalysts showed high fraction of barely reducible cobalt silicate. Promotion with ruthenium led to a significant increase in the fraction of reducible Co3O4 and in decrease in the amount of cobalt silicate. In both calcined monometallic and Ru-promoted cobalt catalysts supported by larger pore silicas, easy reducible Co3O4 was the dominant phase. Promotion with ruthenium of larger pore catalysts had smaller influence on cobalt dispersion, fraction of reducible cobalt phases and thus on catalytic performance.  相似文献   

16.
γ-Al2O3 and SiO2 supported Co catalysts, with varying amounts of Ru, were prepared and evaluated for Fischer–Tropsch synthesis (FTS). The composition of Ru for optimum activity was found to be support-dependent. The reducible Co3O4 was high in the region of 0–1.64 wt.% of Ru in Co/SiO2 catalysts. Co/γ-Al2O3 displayed a maximum for reducible Co species at 0.42 wt.% Ru. Segregation of Ru occurred beyond this composition decreasing the extent of reduction. Co/γ-Al2O3 catalysts showed lower activity and olefin selectivity, in spite of higher Co dispersion, than Co/SiO2 catalysts. The catalytic performance depends on the amount of reducible Co species, which again depends upon the optimum content of Ru.  相似文献   

17.
A new structure-directing agent (SDA) was firstly reported for the synthesis of a zeolite LEV analogue. N,N-dimethyl piperidine performed the SDA function, and induced the synthesis of products from a zeolite MOR with 12-ring channels to a zeolite LEV analogue with only 8-ring channels. The zeolite LEV analogue was synthesized from gels with initial compositions (5.0–6.0)Na2O–Al2O3–(10–200)SiO2–(4.0–8.0)N,N-dimethyl piperidine–400H2O at 150 °C. The 29Si NMR spectra showed that the relative intensities of the first line at −115 ppm for low Si/Al ratios were lower than that at high Si/Al ratios. Varying ion exchanges led to different acidities in the zeolite LEV analogue, with the acidity of H-LEV-HCl higher than that of H-LEV-NH3·H2O. Zeolite H-LEV in hydration of propene showed a higher selectivity of 1-propanol.  相似文献   

18.
Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru–Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer–Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C5–C12). The tailor-made Ru–Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time, Ru increased Co reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru–Co/SiO2/HZSM-5 catalyst.  相似文献   

19.
Complex fac-[RuCl3(NO)(P–N)] was synthesized from [RuCl3(H2O)2(NO)] in methanol solution under reflux. The orange solid obtained was characterized by NMR (31P{1H}, 1H, 13C) and, cyclic voltammetry, ESI-MS, IR, elemental analysis and X-ray diffraction structure determination. The 31P{1H} reveals the presence of singlet at 36 ppm. IR N–O stretching as KBr pellets or CH2Cl2 solution presented 1866 cm−1 and 1872 cm−1, respectively.  相似文献   

20.
A systematic study was undertaken to investigate the effects of the initial oxidation degree of iron on the bulk phase composition and reduction/carburization behaviors of a Fe–Mn–K/SiO2 catalyst prepared from ferrous sulfate. The catalyst samples were characterized by powder X-ray diffraction (XRD), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS) and H2 (or CO) temperature-programmed reduction (TPR). The Fischer–Tropsch synthesis (FTS) performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the fresh catalysts are mainly composed of α-Fe2O3 and Fe3O4, and the crystallite size of iron oxides is decreased with the increase of the initial oxidation degree of iron. The catalyst with high content of α-Fe2O3 in its as-prepared state has high content of iron carbides after being reduced in syngas. However, the catalyst with high content of Fe3O4 in its as-prepared state cannot be easily carburized in CO and syngas. FTS reaction study indicates that Fe-05 (Fe3+/Fetotal = 1.0) has the highest CO conversion, whereas Fe-03 (Fe3+/Fetotal = 0.55) has the lowest activity. The catalyst with high CO conversion has a high selectivity to gaseous hydrocarbons (C1–C4) and low selectivity to heavy hydrocarbons (C5+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号