首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以碳化后的中间相沥青为前驱体、KOH为活化剂制备了超级电容器用活性炭电极材料,考察了KOH活化温度和碱碳比对所制备的超级电容器用活性炭电极材料的孔隙结构和电化学行为的影响,分析了不同工艺条件下所制备的活性炭电极材料的孔结构和电化学性能的影响因素。结果表明,于800℃活化温度和4∶1碱碳比条件下制备的活性炭电极在1mol/L(C2H5)4NBF4/PC时的最大比电容量可达103.2F/g,活性炭孔结构和比电容量的变化依赖于具体的处理工艺,中孔的含量对活性炭电极的比电容量会产生重要影响。  相似文献   

2.
超级电容器用活性炭的制备与电化学表征   总被引:1,自引:0,他引:1  
以煤焦油沥青为前驱体,采用化学活化法制备了超级电容器用高比表面活性炭和活性炭电极.考察了活化温度对活性炭电极比电容量的影响,研究了活性炭材料的比表面积和孔结构与活性炭电极的充放电性能之间的关系,并对活性碳电极进行了电化学表征.结果表明,在500~700℃,随着活化温度的提高,活性炭电极的比电容量显著增大,当活化温度超过700℃时,活性炭电极材料的比电容量变化不明显.700℃活化温度下所制备的活性炭材料呈现明显的多孔结构,孔容为1.038cm3/g,比表面积为1959m2/g;所制成的活性炭电极比电容量为210F/g,等效内阻为0.9Ω/cm2,10mA/cm2充放电500次后保持90%以上电容量,交流阻抗谱在频率低于转化点时表现出纯粹的电容行为,循环伏安曲线显示出良好的可逆特性.  相似文献   

3.
以中间相沥青为前驱体,经自挥发发泡法、KOH活化法制备的中间相沥青基活性泡沫炭作为超级电容器电极材料。采用扫描电镜、X射线衍射和低温(77K)N2吸附法对中间相沥青基活性泡沫炭的表面形貌和微观结构进行表征。中间相沥青基活性泡沫炭的比表面积为2700m2/g,总孔孔容为1.487cm3/g。通过恒流充放电、循环伏安和交流阻抗测试,考察了中间相沥青基活性泡沫炭作为超级电容器电极材料的电化学性能。在电流密度为0.02A/g时,中间相沥青基活性泡沫炭的比容量为240.48F/g,能量密度为33.4Wh/kg;在电流密度为5A/g时,比容量为166.68F/g,具有良好的电化学特性。  相似文献   

4.
前驱体对炭泡沫孔结构的影响   总被引:3,自引:0,他引:3  
分别以煤沥青、石油中间相沥青和AR沥青为前驱体制备炭泡沫材料。采用GPC测定前驱体分子量,SEM观察所制炭泡沫的孔结构,光学显微镜测量所制炭泡沫的孔径及其分布。结果发现,由于煤焦油沥青不含中间相,且QI含量较高,导致在实验条件下不能直接制备出合格的炭泡沫。以石油中间相沥青和AR沥青为原料均能制备出具有分布均匀开孔结构,且微观各向异性的炭泡沫。由AR沥青制备的炭泡沫呈现平均孔径较小(212μm)、孔壁较薄、孔径分布较窄(180μm~300μm)、开孔率较高、以及韧带排列较规整等特点,表明低QI含量、低分子量且分布较窄的前驱体有利于发泡。  相似文献   

5.
KOH活化法制备双电层电容器用高性能活性炭   总被引:4,自引:0,他引:4  
以一种各向同性沥青为原料,通过不同恒温时间制备了具有不同软化点的两种中间相沥青,而后直接用KOH活化获得活性炭.考察了中间相沥青软化点对所得活性炭结构的影响,研究了以所制活性炭为电极材料的双电层电容器的性能.结果表明:两种中间相沥青的软化点分别为280℃和330℃,所得活性炭的比表面积分别为1337m2·g-1和1300m2·g-1.以两种活性炭为电极材料的双电层电容器在放电电流密度为50mA/g时的比容量分别为190.8F·g-1和255.6F·g-1.循环伏安测试表明:较低软化点中间相沥青制备的活性炭电极材料具有较好的矩形形状.  相似文献   

6.
以一种各向同性沥青为原料,通过不同恒温时间制备了具有不同软化点的两种中间相沥青,而后直接用KOH活化获得活性炭。考察了中间相沥青软化点对所得活性炭结构的影响,研究了以所制活性炭为电极材料的双电层电容器的性能。结果表明:两种中间相沥青的软化点分别为280℃和330℃,所得活性炭的比表面积分别为1337m2·g-1和1300m2·g-1。以两种活性炭为电极材料的双电层电容器在放电电流密度为50mA/g时的比容量分别为190.8F·g-1和255.6F·g-1。循环伏安测试表明:较低软化点中间相沥青制备的活性炭电极材料具有较好的矩形形状。  相似文献   

7.
通过聚碳硅烷和中间相沥青在320℃共混及不同温度热解、炭化、石墨化处理得到碳化硅/中间相沥青炭前驱体,然后采用Cl_2在1 000℃对前驱体进行刻蚀,成功制备碳化硅衍生碳/中间相沥青炭复合材料。采用偏光显微镜、X射线衍射、扫描电子显微镜、透射电子显微镜和拉曼光谱对产物的微观形貌和结构进行了表征,利用物理吸附仪分析其比表面积和孔结构特征。结果表明,随着热处理温度的升高,聚碳硅烷热解形成的SiC的晶体尺寸变大,同时沥青炭的石墨化程度也变高;刻蚀后碳化硅衍生碳的结构以无定形碳为主,有明显的石墨化碳层分散其中,样品的比表面积随热处理温度升高而减小,微孔孔径增大。  相似文献   

8.
以中间相沥青(Mesophase pitch,MP)为前驱体、KOH作为活化剂,分别采用直接活化法、预炭化活化法制备出活性炭(Activated carbons,ACs).采用N2吸附法对所制ACs的比表面积、孔径分布进行分析.将所制ACs应用于电化学电容器电极材料,进行恒流充放电、循环伏安电化学分析.结果表明:电极的电化学性能不仅受活性炭比表面积、孔结构的影响,也与活性炭的微观形貌有关.其中预炭化活化法ACs颗粒具有片层结构,更有利于炭电极与电解液的浸润,提高微孔比表面积对比电容的贡献.  相似文献   

9.
以中间相沥青为原料,采用KOH活化制取了超高表面积活性炭,其比表面积高达3464m^2/g,总孔容积高达2.14m^3/g,碘吸附值为3094mg/g,苯吸附值为1610mg/g.所制活性炭富含发达的微孔,其孔径主要集中在1~4nm范围内,具有优异的吸附性能.研究了中间相沥青调制对纳米级微孔超高表面积活性炭性能的影响,结果表明,制备中间相沥青所用原料的净化处理是制备超高表面积活性炭的关键,以1~2℃/min升至400℃并保温2~3h所得中间相沥青制取的活性炭具有极高的吸附性能,中间相沥青炭物料的碳质微晶结构对超高表面积活性炭制取起着决定性作用。  相似文献   

10.
分别以酚醛树脂和煤沥青泡沫碳为原料,经水蒸气活化、研磨制得比表面积和粒径相近的活性碳粉.采用扫描电镜、BET吸附仪和恒流充放电测试仪对2种活性碳的结构进行了表征并研究了其充放电性能.结果表明,微孔的孔径分布对充放电性能有很大影响,提高比表面积的同时增大微孔的孔径,有利于提高活性碳电极的充放电容量和功率.  相似文献   

11.
Templating techniques are used increasingly to create carbon materials with precisely engineered pore systems. This article presents a new templating technique that achieves simultaneous control of pore structure and molecular (crystal) structure in a single synthesis step. With the use of discotic liquid crystalline precursors, unique carbon structures can be engineered by selecting the size and geometry of the confining spaces and selecting the template material to induce edge-on or face-on orientation of the discotic precursor. Here mesophase pitch is infiltrated by capillary forces into a nanoporous glass followed by slow carbonization and NaOH etching. The resulting porous carbon material exhibits interconnected solid grains about 100 nm in size, a monodisperse pore size of 60 nm, 42% total porosity, and an abundance of edge-plane inner surfaces that reflect the favored edge-on anchoring of the mesophase precursor on glass. This new carbon form is potentially interesting for a number of important applications in which uniform large pores, active-site-rich surfaces, and easy access to interlayer spaces in nanometric grains are advantageous.  相似文献   

12.
印刻法制备中间相沥青基中孔炭   总被引:5,自引:1,他引:5  
用中间相沥青作碳源,硅胶水溶液作造孔剂,采用胶体印刻法制得一系列中孔碳。实验发现当适量纳米级硅源添加到中间相沥青中,会在彼此颗粒间形成一定的纳米孔道,从而导致中间相沥青在炭化过程中没有沥青由固相向液相转化的过程。结果表明:碳硅比、印刻温度以及中间相沥青的基本物化性质都将对中孔碳的孔结构发生重要影响。且制得比表面积和孔容分别为482m2/g和1.62cm3/g的中孔碳。  相似文献   

13.
预氧化对中间相沥青泡沫炭结构和性能的影响机制研究   总被引:2,自引:0,他引:2  
研究了预氧化对萘系中间相沥青的表面化学性质、族组成分布以及对泡沫炭的发泡条件、泡孔形成、孔结构及微结构的影响机制.当中间相沥青经210℃预氧化2h后,其喹啉不溶物含量增加32.3%,族组成分布变窄.在600℃/3MPa发泡条件下,所制石墨化泡沫炭的平均孔径、压缩强度分别为200μm、2.8MPa.  相似文献   

14.
活性炭的制备及应用新进展   总被引:32,自引:0,他引:32  
综述了活性炭材料研究开发的新进展。重点介绍了煤、石油焦、沥青基活性炭的制备方法及针对不同用途的活性炭改性技术,为选择合适的活化方法和制备特殊功能的改性活性炭提供了参考。  相似文献   

15.
党斐  赵炜  陈曦  刘益伦 《复合材料学报》2017,34(5):1069-1074
为探究表面改性对活性炭孔结构及热电转换性能的影响,使用HNO_3和KOH在不同条件下对活性炭进行表面改性,用N2吸附法和XRD图谱表征活性炭改性前后孔结构和石墨化程度的变化。结果表明,改性后活性炭的比表面积和孔容提高,平均孔径减小,并存在石墨晶体结构。干法改性活性炭的比表面积和总孔容由1 077.880m~2/g和0.763cm~3/g分别增加到1 635.268m~2/g和1.128cm~3/g,并且微孔的孔容增加。改性处理可以去除活性炭中的杂质。分别以改性前后活性炭为材料制备固体电极,KCl为电解液,测试活性炭电极的热电转换性能,发现改性后活性炭具有更高的热电转换性能。  相似文献   

16.
以中间相沥青为碳质前躯体,采用自发泡法制得泡沫炭.为了提高比表面积,泡沫炭经质量分数65%的HNO3氧化后,采用化学气相沉积法在其表面生长一层纳米炭纤维(CNFs).泡沫炭表面生长一层CNFs后,其比表面积和导热系数分别由40m2/g、107W/mK相应提高到198 m2/g、125W/mK.这种结构的CNFs/泡沫炭复合材料可以用作气相催化反应体系的催化剂载体.  相似文献   

17.
以酚醛树脂为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的活性炭材料.N_2吸附测试表明随着炭化温度降低,活性炭材料比表面积先增大后减小,孔容则不断增大.其中,550℃炭化样品与KOH反应活性最佳,可制得比表面积为2983m~2/g,总孔容为1.58cm~3/g,中孔孔容达到0.59cm~3/g的活性炭材料.采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能,结果表明,PF550活性炭材料电容性能最佳,在有机电解液中100mA/g充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性;活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号