首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
强碱弱酸盐溶液对单晶硅太阳能电池表面织构化的影响   总被引:1,自引:0,他引:1  
对晶向为(100)的p型单晶硅片进行表面刻蚀,制作减反射绒面。本实验是在传统氢氧化钠-异丙醇混合液中分别加入不同浓度的醋酸钠溶液、硅酸钠溶液和碳酸钠溶液对单晶硅片进行刻蚀。实验发现:分别加入醋酸钠溶液、碳酸钠溶液并没有在降低表面反射率方面起到很大作用,而只有加入硅酸钠溶液降低了表面反射率,有利于形成较好的腐蚀绒面。因此...  相似文献   

2.
在硅片表面制备绒面结构能够有效降低太阳光在硅片表面的反射损失,是提高太阳能电池转换效率的一条重要途径。通过真空热蒸发法在多晶硅片上沉积纳米银颗粒,利用金属辅助化学腐蚀(MACE)法,制备了不同腐蚀时间下的纳米绒面结构,其中,腐蚀时间为60s的纳米绒面的平均反射率低至4.66%(300~1100nm)。同时,对腐蚀时间为60s的纳米绒面用KOH溶液进行优化处理,将KOH处理前后的多晶硅片采用常规电池工艺进行电池制备研究。对比发现,经过KOH处理后的电池效率比未经KOH处理的电池效率提高了0.43%。  相似文献   

3.
沈凯  满石清 《材料导报》2012,26(12):16-18,21
利用乙二胺(Ethylenediamine anhydrous,EDA)/异丙醇(Isopropyl alcohol,IPA)体系对单晶硅(100)面进行了各向异性腐蚀,研究了不同温度、不同反应时间条件下单晶硅表面的绒面结构和表面反射率。利用EDA/IPA体系得到的金字塔结构尺寸为8μm左右,但均匀性较差。在1.5%EDA、5%IPA体系中添加5%Na2SiO3,80℃反应15min后获得了平均反射率为11%、表面金字塔结构均匀且尺寸较小的单晶硅绒面。实验结果表明,Na2SiO3的引入使金字塔的尺寸从8μm左右降低至3μm左右,并且均匀度也得到改善。  相似文献   

4.
研究了TMAH(四甲基氢氧化铵)和NaOH腐蚀液在制作单晶硅片小绒面中的应用,制作出平均尺寸小于2μm的金字塔绒面;比较了不同硅片预处理(酸减薄、碱减薄、原片)对金字塔绒面尺寸、均匀性、覆盖率以及反射率的影响以及电池的I-V性能,分析了不同绒面结构对接触电阻的影响;指出单晶硅小金字塔绒面是使用激光制备高效晶体硅太阳电池的关键.  相似文献   

5.
在零磁场和2T、4T磁场中用NaOH溶液腐蚀制备多晶硅绒面结构,样品板平面分别平行和垂直于磁场放置。用电子天平称重表征硅片的腐蚀程度、用奥林巴斯LEXT OLS4100共聚焦显微镜观察多晶硅片形貌、用Ocean Optics USB4000光谱仪测量多晶硅片的反射率、用WT-1200硅片测试仪测量样品的少子寿命,研究了磁场方向对碱腐蚀构建多晶硅绒面结构的影响。结果表明:随着磁感应强度的提高多晶硅片的腐蚀程度严重,绒面结构变得均匀和细腻,反射率降低;在磁感应强度相同的条件下碱液中沿着磁场方向运动的OH-离子不受磁场力作用,而运动方向与磁场方向不完全一致的OH-离子受磁场产生的Lorenz力作用。Lorenz力使板平面垂直于磁场方向的硅片样品腐蚀程度更加严重、绒面和断层状结构细腻程度更加显著、少子的寿命更长、反射率更低。磁感应强度为4T时反射率降低到14.5%,在用碱液腐蚀制备多晶硅绒面结构过程中施加强磁场,板平面垂直磁场方向放置硅片减反射效果更加显著。  相似文献   

6.
在单晶硅太阳电池的绒面制作过程中分别采用一元醇(乙醇、异丙醇)和二元醇(乙二醇、丙二醇)作为添加剂,比较它们对单晶硅绒面特性的影响.实验表明,一元醇可以降低化学反应速率,而二元醇可以加快反应速率,缩短制绒时间.二元醇相比一元醇具有更高的沸点,在制绒过程中挥发更少,可以减少药品的损耗.降低成本,然而二元醇的消泡效果比一元醇差,制绒时需要采用更大的初始浓度.扫描电子显微镜(sEM)结果表明,一元醇趋向于使绒面金字塔更均匀,而二元醇则容易导致绒面金字塔不均匀.反射谱的测试结果表明,采用二元醇作为添加剂进行制绒,相比一元醇,可以获得更低的硅片表面反射率.  相似文献   

7.
晶体硅片的制绒技术是太阳能电池制造工艺中的关键步骤。本研究以工业中酸制绒方法为基础, 研究了腐蚀时间、浓度对绒面结构以及反射率的影响。此外, 还采用金属催化化学腐蚀法进行制绒, 选用氢氟酸和硝酸银作为腐蚀液。而且对两种制绒方法效果进行了对比。研究获得的最优绒面结构及反射率结果的实验条件为: 氢氟酸浓度4.6 mol/L、硝酸银浓度0.02 mol/L, 室温下反应90 min, 得到的平均反射率为8%, 远低于目前多晶硅片制绒生产标准。  相似文献   

8.
晶体硅片的制绒技术是太阳能电池制造工艺中的关键步骤。本研究以工业中酸制绒方法为基础,研究了腐蚀时间、浓度对绒面结构以及反射率的影响。此外,还采用金属催化化学腐蚀法进行制绒,选用氢氟酸和硝酸银作为腐蚀液。而且对两种制绒方法效果进行了对比。研究获得的最优绒面结构及反射率结果的实验条件为:氢氟酸浓度4.6 mol/L、硝酸银浓度0.02 mol/L,室温下反应90 min,得到的平均反射率为8%,远低于目前多晶硅片制绒生产标准。  相似文献   

9.
张发云 《材料导报》2014,28(18):137-140
基于麦克斯韦方程组和材料本构方程,利用多物理场有限元软件COMSOL Multiphysics 3.5a中的RF模块建立了多坑绒面的有限元模型,并对硅片腐蚀前后的光学特性进行了模拟。研究表明,与硅片腐蚀前相比,腐蚀后(即多坑)绒面反射率较低,功率流y分量较高,具有较好的陷光效果,当波长为800nm时,多坑绒面表面电场z分量的最大值和最小值分别为腐蚀前硅片的3.1倍和2.3倍,而表面磁场y分量两个极值分别为腐蚀前硅片的6倍和6.6倍;通过将模拟结果和实验数据比较可知,多坑模型模拟结果更接近实验值,所获模拟结果可更好地指导实际生产。  相似文献   

10.
在硅基太阳能电池表面制备减反层可以有效降低硅表面的反射率, 提高吸收率, 从而提高硅基太阳能电池的光电转换效率。本研究利用四甲基氢氧化铵(Tetramethyl Ammonium Hydroxide TMAH)溶液对(100)单晶硅进行各向异性腐蚀, 在表面腐蚀出金字塔结构, 得到了最低为6%左右的反射率。然后采用水热法在该衬底生长氧化锌纳米棒, 得到了最低小于3%的反射率, 比单采用腐蚀或者ZnO纳米棒生长的硅表面的反射率更低。这种减反方法工艺简单、高效, 有望得到应用。  相似文献   

11.
A simple process was developed to fabricate poly (lactic acid) (PLA) film possessing a highly ordered nanoscale surface. For the first step, an array of silica microspheres was prepared by self-assembly on a completely hydrophilic silicon wafer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images showed that a highly ordered array was formed, and then this array was used as the template for fabricating polymer film with highly ordered nanoscale surface. Next, a PLA solution was spin coated on the template. After solidifying, silica microspheres were embedded in the thin layer of PLA, maintaining their highly organized structures. Finally, silica microspheres were etched away by hydrofluoric acid, and only the PLA film with a close-packed hexagonally pattern structure was left on the silicon wafer substrate.  相似文献   

12.
Wang H  Jin Z  Zheng Y  Ma H  Li T  Wang Y 《Nanotechnology》2008,19(17):175307
Boron is selectively implanted on the surface of an n-type silicon wafer to form a p-type area surrounded by an n-type area. The wafer is then put into a buffered oxide etch solution. It is found that the n-type area can be selectively etched without illumination, with an etching rate lower than 1?nm?min(-1), while the p-type area can be selectively etched under illumination with a much higher etching rate. The possible mechanism of the etching phenomenon is discussed. A simple fabrication process of silicon nanowires is proposed according to the above phenomenon. In this process only traditional micro-electromechanical system technology is used. Dimensions of the fabricated nanowire can be controlled well. A 50?nm wide and 50?nm thick silicon nanowire has been formed using this method.  相似文献   

13.
Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated using SEM. The formation of a nanoporous Si layer on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900 nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.  相似文献   

14.
A new type of crystalline silicon solar cell is described. Superficially similar to a photoelectrochemical cell a liquid electrolyte creates a depletion (inversion) layer in an n-type silicon wafer, however no regenerative redox couple is present to ferry charge between the silicon and a counter electrode. Instead holes trapped in the electrolyte-induced inversion layer diffuse along the layer until they come to widely spaced grid lines, where they are extracted. The grid lines consist of a single-walled carbon nanotube film etched to cover only a fraction of the n-Si surface. Modeling and simulation shows the inversion layer to be a natural consequence of the device electrostatics. With electronic gating, recently demonstrated to boost the efficiency in related devices, the cell achieves a power conversion efficiency of 12%, exceeding the efficiency of dye sensitized solar cells.  相似文献   

15.
Lithiation and delithiation of porous silicon were studied using reflection high energy electron diffraction (RHEED), two-dimensional photoelectron diffraction, and a stereo atom-scope, which is realized by the combination of a display-type spherical mirror analyzer and circularly polarized soft X-ray. A nanosized porous silicon layer was prepared by electrochemical etching of p-type silicon (001) wafer in ethanolic solutions containing hydrofluoric acid. The morphology of the as-grown porous silicon as observed using SEM was filled with about 9 nm holes. This porous silicon also retains the crystallographic orientation of the wafer from which it was etched and is optically active with visible photoluminescence. The measured RHEED pattern and 2π steradian Si 2p photoelectron diffraction pattern from Si (001) surface showed an increase in lattice constant by lithiation, and that change in lattice constant was restored to its original values by delithiation.  相似文献   

16.
研究了不同的晶体硅表面钝化方法,测试分析了硅片的少数载流子寿命以及对晶体硅/非晶硅异质结(HIT)太阳电池性能的影响。发现适当时间的HF溶液处理、氢等离子体处理和表面覆盖约3nm的本征非晶硅层能有效提高硅片的少子寿命,从而提高HIT太阳电池的开路电压。对电池制备工艺综合优化后,得到了基于n型晶体硅的光电转换效率为16.75%(Voc=0.596V,Jsc=41.605mA/cm2,FF=0.676,AM1.5,25℃)的HIT太阳电池。  相似文献   

17.
Precise chemical analysis (PCA) was developed to allow the study of non-interconnected atoms on crystalline semiconductor surfaces, such as those produced during rapid thermal processing (RTP) of silicon and electron beam lithography on gallium arsenide (GaAs). The PCA method is based on selectively dissolving the different components present on the semiconductor surface using preferential etchant solutions. After etching, the etchant solution, containing the etched component, is analyzed by a photometric technique. In this paper, we present photometric measurements of the amount of free (non-interconnected) atoms that remain on semiconductor surfaces following electron beam and RTP processing. In this context, free atoms are those presenting in any form other than crystalline GaAs or Si, for instance, those in the form of surface oxides. Using the PCA method, free Ga and As were detected on GaAs surfaces after electron beam lithography. Free silicon, boron and phosphorous atoms were found on silicon surfaces after RTP. The concentration of boron diffused into a silicon wafer during RTP was also carried out by means of slight surface etching. We estimate the accuracy of this PCA method at 2% for Ga and 5% for all other elements.  相似文献   

18.
Nanoscale textured silicon and its passivation are explored by simple low-cost metal-assisted chemical etching and thermal oxidation, and large-area black silicon was fabricated both on single-crystalline Si and multicrystalline Si for solar cell applications. When the Si surface was etched by HF/AgNO(3) solution for 4 or 5 min, nanopores formed in the Si surface, 50-100 nm in diameter and 200-300 nm deep. The nanoscale textured silicon surface turns into an effective medium with a gradually varying refractive index, which leads to the low reflectivity and black appearance of the samples. Mean reflectance was reduced to as low as 2% for crystalline Si and 4% for multicrystalline Si from 300 to 1000 nm, with no antireflective (AR) coating. A black-etched multicrystalline-Si of 156 mm × 156 mm was used to fabricate a primary solar cell with no surface passivation or AR coating. Its conversion efficiency (η) was 11.5%. The cell conversion efficiency was increased greatly by using surface passivation process, which proved very useful in suppressing excess carrier recombination on the nanostructured surface. Finally, a black m-Si cell with efficiency of 15.8% was achieved by using SiO(2) and SiN(X) bilayer passivation structure, indicating that passivation plays a key role in large-scale manufacture of black silicon solar cells.  相似文献   

19.
Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this?mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号