首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
研究了一种镍基单晶高温合金的热处理工艺。采用差热分析法和金相测试法确定合金的初熔温度在1280℃左右;利用光学金相显微镜观察了合金在不同固溶处理后的微观组织,测试了合金的持久性能。结果表明,合金的最佳热处理工艺为1245℃/2h,AC+1275℃/4h,AC+1100℃/2h,AC+850℃/24h,AC。采用该工艺处...  相似文献   

2.
目的 研究定向凝固镍基高温合金CM247LC的最优热处理工艺制度,通过优化热处理工艺提高合金的力学性能。方法 分别用JMatPro热力学分析软件和金相法判断CM247LC合金的初熔温度点,并确定合金的热处理窗口温度;利用光学显微镜(OM)和能谱分析仪(EDS)观察合金经不同固溶处理后的微观组织和元素偏析情况;利用扫描电子显微镜(SEM)观察合金经不同时效处理及持久断裂后的微观组织形貌。结果 CM247LC合金的初熔温度为1 260 ℃,热处理窗口温度为1 215~1 255 ℃。根据热处理窗口温度,设计了6种固溶处理工艺,对比发现,经1 228 ℃/2 h+1 240 ℃/2 h+1 255 ℃/2 h、AC固溶工艺处理后,合金的组织均匀化程度最高,元素偏析得到了显著改善,γ/γ′共晶的体积分数从铸态时的18.9%降至5.04%,确定此工艺为合金优化固溶处理工艺参数。合金经优化固溶处理后再经1 080 ℃/4 h、AC高温时效处理和870 ℃/22 h、AC中温时效处理,析出的γ′相尺寸(337.3 nm)、体积分数(67.81%)适宜且立方度最高,确定此工艺为最优热处理工艺。经最优热处理工艺处理的合金在980 ℃/205 MPa下的持久寿命为162 h,相比于铸态和固溶态处理的合金持久寿命分别提高了87 h和45 h。结论 通过优化固溶处理和时效处理,确定合金最优热处理工艺参数为:1 228 ℃/2 h+1 240 ℃/2 h+1 255 ℃/2 h、AC(固溶处理)+1 080 ℃/4 h、AC+870 ℃/22 h、AC(时效处理),经最优热处理工艺处理的合金持久寿命显著提高。  相似文献   

3.
对抗腐蚀定向凝固高温合金DZ111进行了热处理试验。试验结果表明:在870℃/32h时效之前,进行一次1080℃的处理,可提高合金的力学性能。因此选择DZ111合金的热处理制度为:1210℃/4h,AC+1080℃/4h,AC+870℃/32h,AC。  相似文献   

4.
对第三代DD33单晶高温合金进行标准热处理、热等静压以及不同制度的后续固溶和时效处理,并在850℃/650 MPa和1100℃/170 MPa条件下进行高温持久性能实验,使用金相显微镜(OM)、扫描电子显微镜(SEM)和X射线三维成像技术(XCT)等手段观察和表征不同状态的样品,研究了热等静压和热处理对这种合金显微组织和持久性能的影响。结果表明:铸态DD33单晶高温合金经过适当的热等静压和后续热处理工艺后,样品的组织形貌(γ′相尺寸、体积分数与立方化程度)与标准热处理态基本相同。与标准热处理态合金相比,热等静压处理后合金显微孔洞的体积分数和尺寸均显著降低,其体积分数从0.0190%降低到0.0005%,最大孔等效直径从36.9 μm减小到14.2 μm。在850℃/650 MPa和1100℃/170 MPa条件下热等静压后的样品持久寿命均显著延长。这表明,适当的热等静压和热处理能消除合金内部的显微孔洞缺陷,使其持久性能显著提高。  相似文献   

5.
李萍  李树索  韩雅芳 《材料工程》2009,(S1):131-135
研究了热处理对Ni3Al基单晶合金IC6SX的微观组织和持久性能的影响。实验结果表明:IC6SX单晶合金的铸态组织具有典型的树枝晶结构,由γ′相、γ相和NiMo相组成。合金经过1280℃/10h,风冷固溶处理后,γ′相全部固溶,合金组织均匀,γ′相尺寸约为0.28μm。合金在1340℃固溶处理后发生了少量的初熔。对固溶后的合金进行了870℃/32h,空冷的时效处理,得到了尺寸约为0.5μm的立方状分布的γ′相。对不同状态的IC6SX单晶合金在1100℃/130MPa条件下进行持久性能测试,结果表明,经过时效处理后的合金具有最长的持久寿命,高达120h。  相似文献   

6.
采用不同的时效制度处理热等静压+挤压+等温锻造工艺的FGH95合金,并对处理后合金的显微组织和力学性能进行了系统研究。结果表明,经过双级时效(870℃/1 h,AC+650℃/24 h,AC)和单级时效(760℃/10 h,AC)处理后,合金的晶粒度无明显差异,但γ′相的数量、尺寸及分布存在显著差异。相比于单级时效,双级时效可以更有效地促进晶内γ′相粗化,晶内γ′相平均直径达到78 nm,而单级时效为67 nm;同时,双级时效更有利于M 3B 2等晶间强化相的析出。二者的拉伸强度水平相当,但双级时效合金的持久寿命低于单级时效合金,而其持久塑性要优于单级时效合金。  相似文献   

7.
通过对精锻、自由锻、旋锻及热轧4种加工方式获得的Ti600合金棒材在3种不同的热处理制度下进行处理,再测试室温拉伸性能及蠕变性能,研究不同加工工艺对Ti600合金棒材性能的影响.研究结果表明,在同一种热处理制度下,加工工艺对材料的室温拉伸性能及蠕变性能并无太大影响,但是4种工艺加工的棒材在1 060℃,1 h,AC+650℃,8 h,AC都具有较低的室温塑性,而在1 005℃,1 h,AC+650℃,8 h,AC虽具有好的室温塑性但抗蠕变性能较差.只有经过1 020℃,1 h,AC+650℃,8 h,AC处理,才能使其室温性能与蠕变性能获得良好的匹配.  相似文献   

8.
DD2单晶高温合金是具有良好综合性能的第一代单晶高温合金。该合金具有高的抗氧化性能、瞬时拉伸及持久性能 ,尤其是在 85 0℃和 90 0℃下经过 10 0 0~ 30 0 0 h长期时效后 ,无任何 TCP相产生 ,仍能保持良好的高温持久性能。  相似文献   

9.
采用螺旋选晶法制备DD6合金单晶试棒,标准热处理后在980℃长期时效2000 h,研究980℃长期时效对DD6单晶高温合金的组织演化及力学性能的影响.结果表明:随着长期时效时间的延长,合金中γ'相的尺寸增大,2000 h后γ'相尺寸约为1μm,没有TCP相析出,合金具有较好的组织稳定性.2000 h长期时效试样在980℃/243 MPa下持久寿命为180.16 h,为热处理态的56.3%;在1070℃/130 MPa下持久寿命为144.42 h,为热处理态的35.31%,断裂模式均为微孔聚集型断裂;相比热处理态的合金,2000 h长期时效态试样760℃的抗拉强度和屈服强度分别降低5.55%和5.88%;980℃的抗拉强度和屈服强度分别下降11%和10.59%.  相似文献   

10.
研究了不同热处理条件下两相区轧制的Ti-6Al-4V-0.1B合金棒材的组织和性能。研究结果表明,α+β相区热处理后获得等轴组织或双态组织,随着热处理温度的升高,初生α相含量降低;β相区热处理后获得魏氏组织,原始β晶粒及α集束的尺寸随着热处理温度的升高而增大。在拉伸变形时,魏氏组织的强度高于双态组织,但塑性明显低于后者。900℃/1 h,AC+540℃/8 h,AC和1 080℃/1 h,AC+540℃/8 h,AC处理之后获得等轴组织和魏氏组织,具有该组织类型合金最佳的强度和塑性匹配,在拉伸载荷的作用下,TiB相与基体之间存在很好的结合力,TiB相在拉伸过程中传递载荷。  相似文献   

11.
DD8单晶镍基高温合金热处理制度研究   总被引:2,自引:0,他引:2  
研究了热处理工艺对DD8单晶高温合金组织及性能的影响,结果表明,经过1100℃/8hA.C.+1240℃/4hA.C.+1090℃/2hA.C.+850℃/24hA.C的4级处理明显改善了DD8单晶合金元素的枝晶偏析,合金中γ相获最佳含量并形成适当尺寸配合,合金获得理想的综合性能。  相似文献   

12.
采用籽晶法制备含有大角度晶界(约20°)的双晶试板,通过分析不同Hf含量(质量分数:0%,0.4%)的含Re合金晶界处析出相、γ/γ′组织、晶界成分及1100℃/100MPa横向持久性能,研究Hf对晶界组织及高温力学性能的影响。结果表明:Hf显著提高了铸态合金大角度晶界处共晶和碳化物体积分数;热处理后,Hf显著抑制了晶界胞状再结晶组织的形成,含Hf合金的1100℃/100MPa横向持久寿命均显著提高。晶界持久性能与晶界析出相种类、形貌、含量和成分密切相关,而Hf元素在晶界未发现显著的偏聚。本研究对先进镍基单晶合金中晶界缺陷的评价及Hf元素晶界强化作用机制的认识具有一定的指导意义。  相似文献   

13.
Effects of Rhenium on Creep Rupture Life of a Single Crystal Superalloys   总被引:7,自引:0,他引:7  
1.Intr0ductionSince1980'stheturbinebladefabrication0fsinglecrystalsuperall0yshasbeenone0fthesignificantkeytechnol0giesofaeroengine.Atpresentsinglecrystalsuperalloysarebeingusedtofabricatethebladesofaeroengineswithpushweightrati01O,suchasaer0-engineFll9(U.S.A.),Fl2O(U.S.A.),GE90(U.S.A.),EJ200(England,Germany,ItalyandSpain),M88-2(France)andP2000(Russia).Thesinglecrystalsuperalloysofthefirstgenerati0n,secondgenerati0nalldthirdgenerationhavebeenstudiedandappliedt0thebladesandvanesofaeroe…  相似文献   

14.
热处理对TC4-DT钛合金组织性能的影响   总被引:3,自引:0,他引:3  
研究了Ф300mm的TC4-DT钛合金几种热处理工艺参数对显微组织和室温性能的影响。研究表明α+β区锻造Ф300mm的棒材晶粒较大,低倍呈现模糊晶,局部区域有明显的清晰晶,表明大规格棒材锻造均匀性较差。大规格的棒材+双重退火热处理后,拉伸性能和断裂韧性均能达到Rm≥825MPa,RP0.2≥750MPa,A(纵向)≥8%,Z≥15%;KIC(T—L)≥90MPa·m1/2,具有良好的强度塑性匹配性能。α+β相区锻造的Ф300mm棒材经965℃/1h Ac十550℃/6h AC和940℃/1h AC+570℃/6h AC处理后,疲劳裂纹扩展速率在△K=11MPa·m1/2时,分别达到2.833036×10^-6mm/cycle和7.294209×10^-6mm/cyele。  相似文献   

15.
为研究高代单晶高温合金组织稳定性影响机制,制备含6%(质量分数,下同)Ru和4.5%Ru的两种单晶高温合金D1和D2,经完全热处理后在980℃下长期时效1000 h。观察不同尺度上的显微组织及合金元素分布,并结合热力学计算进行分析。结果表明:两种合金经完全热处理后仍有较高含量的高熔点合金元素偏析于枝晶干中,使枝晶干区域长期时效后均有较多TCP相析出;两种合金中,Ru和Re均为TCP相主要形成元素,Ru含量较高的D1合金中TCP相析出量多于Ru含量较低的D2合金;Ru和Re含量增加会使合金平均d轨道电子能级增大,增加合金TCP相析出倾向,但由于Ru可以降低Re在γ相中偏析程度,因此Ru含量增加又可以减少Re对合金组织稳定性的不良影响;在本研究中,Ru对TCP相析出的促进更为显著,因此,在980℃下长期时效1000 h后D1合金较D2合金析出更多TCP相。  相似文献   

16.
为探究热处理工艺参数对GH2036合金硬度及疲劳性能的影响,基于四因素三水平正交热处理实验,对GH2036铁基高温合金的硬度性能进行优化,并分析热处理后的显微组织;同时利用疲劳实验与DIC(digital image correlation)非接触全场应变测量相结合的方法,利用Y方向应变-疲劳寿命比的云图,直观地分析热处理后GH2036合金疲劳失效过程。结果表明:固溶温度对合金硬度性能的影响最大,其次是固溶时间、时效时间、时效温度,极差分析所得的最优热处理工艺为960℃/60 min+水冷+560℃/2 h;正交试验中最高显微维氏硬度(HV305.34)较未处理试样(HV260.41)提高17.3%;热处理后金相组织基体为奥氏体,增强相为第二相碳化物,显微硬度值随着奥氏体中的第二相碳化物含量的增加而升高;热处理后平均疲劳寿命(942372次循环)较未处理试样(450800次循环)提高109%,疲劳性能明显优化。  相似文献   

17.
采用LBW+SPF组合技术制造Inconel718合金多层夹芯板结构.为了增强多层夹芯板结构使用时的安全性,研究其热处理技术.结果表明:Inconel718合金在焊接过程产生了Nb含量较高的Laves沉淀相;超塑成形后焊缝中的Nb元素的偏析问题得了缓解;经980℃固溶30min处理后,焊缝中的δ相完全回溶母体γ相,焊缝...  相似文献   

18.
通过不同取向DD6单晶高温合金980℃/250MPa持久测试,研究了取向对980℃持久性能的影响。结果表明:[001]取向偏离主应力轴15°以内,DD6单晶高温合金980℃/250MPa持久寿命相当,没有各向异性。这主要是由于近[001]取向DD6单晶高温合金多个〈110〉{111}滑移系共同作用的结果。同时,原子扩散造成的γ′筏排和γ/γ′相界面形成的位错网也降低持久性能各向异性。  相似文献   

19.
研究了不同热处理制度下TC11钛合金锻件的组织和性能.结果表明,在空冷的条件下,随着温度的升高,β转变组织体积增加,初生α含量减少同时体积增大;当热处理温度达到1020℃时组织变成了典型的β区冷却后针状马氏体组织;随着温度的继续升高,等轴α相完全消失,形成了完全由β转变组织构成的层状结构.拉伸试验研究表明,950℃/2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号