首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
周罗庆  王磊  陆冰 《材料导报》2011,(1):183-185
以尼龙6(PA6)/聚氧化乙烯(PE0)为原料配备复合纺丝液,通过高压静电纺丝制备出不同原料比例复合纳米纤维毡,再将纳米纤维毡进行水洗处理。应用电子显微镜(SEM)、原子力显微镜(删)观察分析纳米纤维毡经水洗处理前后的整体及单根纤维形貌。分析纳米纤维膜水洗前后孔隙率变化,同时通过亚甲基蓝吸附测试说明纳米水洗处理对纳米纤...  相似文献   

2.
壳聚糖/聚氧乙烯复合纺丝液性能对静电纺丝的影响   总被引:1,自引:0,他引:1  
为了研究壳聚糖/聚氧乙烯复合纺丝液性能对静电纺丝的影响,利用质量分数为3%的壳聚糖(CS)与聚氧乙烯(PEO)以不同的质量比溶解在浓度为50%的冰乙酸水溶液中制备了CS/PEO复合纺丝液,采用静电纺丝技术制备了CS/PEO复合纳米纤维.用扫描电子显微镜(SEM)对制备出的CS/PEO复合纳米纤维进行表征,并测试了CS/PEO复合纺丝液的溶液性能.从复合纺丝液性能对静电纺纤维成型的影响机理角度对实验结果进行了分析.分析结果表明,在其他静电纺丝参数一定时,纺丝液黏度影响射流的稳定性,从而影响纤维的形貌和直径.只要纺丝液电导率在合适的范围内,对静电纺的影响不大.从泰勒的临界公式中得出了纺丝液临界电压与纺丝液表面张力最佳值的一一对应关系,并与本实验中的实验数据相吻合.  相似文献   

3.
以静电纺丝法和磁控溅射技术制备了负载TiO2纳米颗粒的聚甲基丙烯酸甲酯(PMMA)/蒙脱土(MMT)复合纳米纤维膜,通过光催化降解亚甲基蓝分析比较了不同溅射功率处理的纤维膜的光催化性能,应用电子显微镜(SEM)研究分析溅射功率对纤维形貌的影响以及光催化前后纤维表面形貌的变化.结果表明:经100W和120W功率处理的纤维...  相似文献   

4.
利用静电纺丝技术制备了左旋聚乳酸/氧化石墨烯(PLLA/GO)复合纳米纤维毡。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、孔隙率测试、傅里叶红外光谱分析(FTIR)以及拉伸测试分别对PLLA/GO纳米纤维的形貌结构、孔隙率及力学性能进行了研究。将小鼠骨髓间充质干细胞(MSCs)种植在TSF/PLLA纳米纤维上,通过荧光显微镜分析和碱性磷酸酶(ALP)测试、SEM观察细胞在材料表面的生长以及矿物沉积情况评价复合纳米纤维的生物学性能。结果表明,与纯的PLLA静电纺纳米纤维支架相比,PLLA/GO复合纳米纤维支架的纤维直径显著减小,孔隙率增大,力学性能明显得到改善,拉伸强度和杨氏模量均高于纯PLLA纳米纤维支架将近3倍,而且能够更好地促进MSCs的粘附、增殖和分化。  相似文献   

5.
以溶胶-凝胶法为基础,通过静电纺丝方法制备PVP/SiO2复合纳米纤维膜,经600℃高温煅烧得到SiO2纳米纤维膜;利用扫描电子显微镜(SEM)观察了SiO2纳米纤维膜的结构形貌;傅里叶变换红外光谱(FT-IR)证实了SiO2纳米纤维的形成;通过X射线衍射(XRD)对SiO2纳米纤维的晶型及晶粒大小进行了分析。通过对其亚甲基蓝染料的吸附,研究了SiO2纳米纤维膜的吸附性能。结果表明制备的SiO2纳米纤维形貌稳定,并对亚甲基蓝染料具有良好的吸附性能。  相似文献   

6.
通过同轴静电纺丝技术,研发出可以负载功能因子的可食性纳米材料。对玉米醇溶蛋白(Zein)和聚环氧乙烷(PEO)进行静电纺丝制备纤维膜,采用扫描电镜(SEM)和透射电镜(TEM)对筛选出4种合适纳米纤维膜的微观形貌进行观察,同时作出了傅里叶变换红外光谱(FT-IR)分析,SEM、TEM和FT-IR都充分证明了纳米纤维膜的成功封装。纳米纤维膜的热特性、力学性能和细胞黏附性分析表明,在以共混的纳米纤维中,Zein/PEO包PEO和Zein/PEO包Zein的纤维纳米结构更理想。表现出共混的纳米纤维PEO含量多的能使其拉伸强度增强,同时含PEO的纳米纤维表面细胞位点多,其细胞的黏附性增加。  相似文献   

7.
利用高挥发溶剂,采用静电纺丝技术,通过在二醋酸(CA)纺丝液中添加不同质量分数(0%、1%、2%、3%和4%)的有机改性蒙脱土(O-MMT),制备CA/O-MMT复合多孔纤维膜,通过对亚甲基蓝染料的吸附,比较纤维膜的吸附性能。通过电导率仪和黏度计分别对纺丝液的电导率和黏度进行测试;利用扫描电镜分析O-MMT加入量对制备的复合纳米纤维形貌的影响;利用傅里叶变换红外光谱证实CA/O-MMT复合多孔纤维膜的复合结构;采用透射电镜观察O-MMT在纤维中的分布;通过紫外-可见分光光度计测量复合纤维膜对染料的吸附性能。结果表明:随着O-MMT含量的增加,纤维直径变细,纤维珠节增加,但纤维膜对亚甲基蓝染料的吸附性能提高;且反应温度的升高有利于复合纤维膜对亚甲基蓝染料的降解;酸性条件不利于复合纤维膜对亚甲基蓝染料的降解。  相似文献   

8.
纳米材料作为一种新兴的材料近年来越来越多地用于重金属离子的去除,而静电纺丝技术是制备纳米纤维最有效最直接的方法.静电纺丝纳米纤维具有纤维直径小、比表面积大、孔隙率高、吸附性能强等优点.主要介绍了静电纺丝纳米纤维膜近年来在处理重金属离子方面的一些研究进展,通过对纳米纤维进行官能团改性、加入无机物等方法制备复合纳米纤维膜已经成为近几年研究的热点.  相似文献   

9.
以不同质量分数(0%、0.5%、1%、2%)的透明质酸和聚乙烯醇-苯乙烯基吡啶盐缩合物(PVA-SbQ)为原料,通过高压静电纺丝制得PVA-SbQ/透明质酸复合纳米纤维。利用扫描电子显微镜(SEM)观察比较光交联前后复合纳米纤维的形貌特征,采用傅里叶变换红外光谱(FT-IR)测试分析复合纳米纤维膜的化学性质,利用热重分析仪(TGA)表征复合纳米纤维膜的热稳定性能,采用界面张力仪表征复合纳米纤维膜的吸水性能。结果表明,透明质酸的加入使PVA-SbQ/透明质酸复合纳米纤维直径增加,热稳定性降低,吸水性能下降。光交联后,PVA-SbQ/透明质酸复合纳米纤维膜中纤维粗细不均匀,纤维排列更加紧密。该复合材料作为面膜材料的基材具有良好的应用前景。  相似文献   

10.
以乳液聚合制备的含有不同比例(0%、1%、3%、5%(质量分数))蒙脱土(MMT)的聚甲基丙烯酸甲酯/蒙脱土(PMMA/MMT)为原料,通过高压静电纺丝制得PMMA/MMT复合纳米纤维.采用凝胶渗透色谱法(GPC)、傅里叶变换红外光谱(FT-IR)分别测试分析了聚合物的分子量及分子结构,采用电子显微镜(SEM)观察了纳米纤维毡的整体形貌及直径分布,同时借助液滴形状分析仪对复合纳米纤维润湿性能进行了测试和分析.结果表明,MMT的加入对PMMA的分子量及分子结构均有影响.从而进一步影响了所制备纳米纤维的形貌和亲油性能.  相似文献   

11.
为了研究层间纳米纤维膜对玻纤织物渗流特性的影响,使用超景深三维显微镜表征了纳米纤维含量对玻纤织物微观结构的影响,采用径向法测量了纳米纤维膜夹层玻纤织物预制体的渗透率,重点分析了纳米纤维含量对玻纤织物预制体渗流模式的影响。结果表明:玻璃纤维束间的毫米尺度区域被纳米纤维膜填充而离散成微米尺度区域;预制体孔隙率及渗透率值均随着纳米纤维含量的增加而减小;随着纳米纤维含量的增加,复合预制体表现出的各向异性程度逐渐减小;树脂宏观流动前沿内部分饱和区域面积比例随纳米纤维含量的增加而增大;相同纳米纤维含量预制体的部分饱和区域面积比例随注入时间的增加呈先增大后减小趋势。  相似文献   

12.
The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.  相似文献   

13.
In this study, two types of polyimide (PI) nanofiber mats, including (1) the mats consisting of (almost) randomly overlaid PI nanofibers and (2) the mats consisting of highly aligned PI nanofibers, were prepared by the materials-processing technique of electrospinning. The nanofiber mats were subsequently used to develop composites with polyamide 6 (PA6) via the composites – fabrication method of polymer melt infiltration lamination (PMIL). Owing to superior mechanical properties (i.e., the tensile strength and modulus were 1.7 GPa and 37.0 GPa, respectively) and large specific surface area of electrospun PI nanofibers, the PI/PA6 composites with PI nanofiber mats as skeletal framework demonstrated excellent mechanical properties. In particular, the PI/PA6 composite containing 50 wt.% of aligned PI nanofibers had the tensile strength and modulus of 447 MPa and 3.0 GPa along the longitudinal direction, representing ~700% and ~500% improvements as compared to neat PA6.  相似文献   

14.
陶瓷纤维具有较好的力学、耐高温和抗热震性能,是重要的高温隔热材料.目前,传统陶瓷纤维膜高温隔热性能不佳,限制了其在高温隔热领域的应用.本研究采用静电纺丝技术制备了具有高红外遮蔽性能的SiZrOC纳米纤维膜,纤维的平均直径为(511±108)nm,组成为SiO2、ZrO2、SiOC和自由碳.SiZrOC纤维膜展现出优异的...  相似文献   

15.
尤福  李吉东  左奕  李玉宝 《功能材料》2012,43(6):798-802
浆料粘度是热诱导相分离法制备支架材料的关键因素,采用不同粘度的纳米羟基磷灰石/聚酰胺66(n-HA/PA66)复合浆料制备了相应的n-HA/PA66多孔支架,并对不同粘度浆料制备支架材料的泡孔结构和力学性能等进行了对比研究。结果表明,浆料粘度对n-HA/PA66复合多孔支架的孔径、孔径分布、孔隙率、开孔率、力学强度等性能有显著的影响。随着浆料粘度的增大,制备支架的孔径、孔隙率、开孔率逐渐减小,而力学强度却逐渐增大。当浆料粘度为330Pa.s时,制备出的n-HA/PA66复合多孔支架综合性能最好,其孔径主要分布在200~500μm,平均孔径(324±67.1)μm,孔隙率为(75±1.6)%,开孔率为(59±2.5)%,抗压强度为(2.12±0.90)MPa,能够较好地满足骨组织工程支架材料对孔径、孔隙率和力学性能的要求。  相似文献   

16.
采用静电纺丝法制备了负载有不同含量金属氧化物的纳米TiO2/聚已内酰胺(PA6)及纳米TiO2/PA6/Ag纤维,通过扫描电镜(SEM)对纤维进行了表征,纤维直径在50nm~100 nm之间;讨论了纤维平均直径与溶液黏度及电导率之间的关系;实验选用霉茵作为测试菌种,采用振荡瓶法对纤维进行抗茵性能测试,结果表明,抗茵纤维...  相似文献   

17.
采用干燥剂法系统测试了ePTFE微孔薄膜的透湿情况,分析了透湿性影响因素,得出以下结论:在实验范围内,ePTFE薄膜的孔隙率、孔径和厚度等结构参数对透湿速率影响较小,透湿的主要影响因素是环境温度和湿度。在相同的湿度下,环境温度对透湿量和透过系数的影响显著,并随温度提高急剧增加;在相同温度下,透湿量随湿度的增加而增加,而透过系数变化不大。  相似文献   

18.
纳米氢氧化铝镁改性PVDF膜性能的研究   总被引:1,自引:0,他引:1  
采用相转化法制备了纳米氢氧化铝镁/PVDF杂化膜,考察了纳米氢氧化铝镁的加入对膜的纯水通量、截留率、孔径、孔隙率、微观结构、机械性能、热稳定性和吸附性能的影响.并通过X射线光电子能谱(XPS)和X射线能谱(EDS)分析了膜表面和断面的元素含量.与不添加纳米氢氧化铝镁的PVDF膜性能对比,结果表明,纳米氢氧化铝镁的加入明显提高了膜的纯水通量、截留率、机械性能和吸附性能,而对膜的孔径和孔隙率影响不大.SEM和热重分析表明,纳米氢氧化铝镁的加入明显改变了膜的孔结构,其热性能却略有降低.  相似文献   

19.
The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple‐like polyamide‐6 nanofiber/nets (PA‐6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA‐6 nanonets layer with Steiner‐tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple‐like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple‐like PA‐6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa?1; using its superlight weight of 0.9 g m?2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures.  相似文献   

20.
以含环氧基团三元共聚物纳米纤维为载体,用植酸(PA)为改性剂,得到表面含有磷酸根基团的功能性纤维膜。研究了植酸浓度、反应温度、反应时间对纤维膜改性的影响。采用傅里叶变换红外光谱、热失重分析、扫描电镜、光学接触角测量仪,对纤维膜的结构与表面润湿性进行表征。结果表明,当植酸浓度20%,反应温度70℃,反应时间3h时,改性得到的功能化纤维膜的铅离子吸附容量为60mg/g;改性后纤维膜的形态仍能保持微纳米级网状结构,其直径约为408nm,静态接触角为39.12°,呈现了良好的亲水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号