首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
压电材料锆钛酸铅(PZT)纳米线具有优异的传感和驱动性能,同时其尺寸小,比表面积大,在纳米器件方面具有良好的应用前景,如纳米级的压电传感器和驱动器,超声装置等。相比较于大多数文献要通过加入表面活性剂PVA或者PAA等合成PZT纳米线,本文在不使用任何表面活性剂的条件下,采用ZrC102(8H20),(C4H20)tTi,Pb(N03)3为前驱物,KOH为矿化剂,两步水热合成直径为200~500m、长度为10~50μm的PZT纳米线,水热过程所得产物并非钙钛矿结构,而是体心四方相结构(简称PX相)的P打纳米线。该纳米线经过退火处理(650℃退火20min),可以实现晶型从体心四方到钙钛矿结构的转变。  相似文献   

2.
The cymbal is a miniaturized class V flextensional transducer that was developed for potential use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single element and transducer arrays by coupling finite element analysis (ATILA) and the integral equation formulation (EQI). The pressure and velocity distributions on the surface elements were calculated by ATILA and later used with EQI to calculate the far held properties of the transducer element and arrays. It eliminates the mesh of the fluid domain and makes the 3-D model of a transducer possible. Three-dimensional models of a cymbal transducer and a 3×3 cymbal array were developed in the modeling. Very good agreement was obtained between modeling and measurement for single element transducers. By coupling finite element analysis with the integral equation method using boundary elements, acoustic interaction effects were taken into account. Reasonable agreement was obtained between calculation and measurement for a 3×3 array  相似文献   

3.
Sol-gel derived Pb40Sr60TiO3 (PST) thin film has been investigated as a diffusion barrier for integrating in PbZr30Ti70O3 (PZT) device structures on Si substrates. PST film was deposited on SiO2/Si substrate and annealed at a relatively low temperature range of 550-600 °C producing a crack-free, smooth and textured surface. Following deposition on PST/SiO2/Si template PZT thin film was crystallised exhibiting random grain orientations and an insertion of the bottom Pt/Ti electrode forming PZT/Pt/Ti/PST/SiO2/Si stacks promoted the preferred PZT (111) perovskite phase. PZT (111) peak intensity gradually decreased along with slight increase of the PZT (110) peak with increasing annealing temperature of the buffer PST film. The dielectric and ferroelectric properties of the PZT with barrier PST deposited at 550 °C were assessed. The dielectric constant and loss factor were estimated as 390 and 0.034 at 100 kHz respectively and the remnant polarisation was 28 µC/cm2 at 19 V. The performance of the PZT/PST device structures was compared to similar PZT transducer stacks having widely used barrier TiO2 layer.  相似文献   

4.
The characteristics of a detector fabricated using piezoelectric lead zirconate titanate (PZT) were studied by irradiating it with a 400 MeV/n xenon (Xe) beam while changing the beam flux intensity. The largest output signal was observed from the detector when the beam power per unit time was estimated to be largest. It was also found that the sensitivity per Xe ion of the detector seemed to be higher with decreasing the amount of the Xe ion flux within the limits of the experimental conditions.  相似文献   

5.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

6.
Thin films of erbium doped lead zirconate titanate (PZT) of different thickness were deposited by sol–gel technique on Pt/TiO2/SiO2/Si substrates. Capacitance–voltage measurements show that the dielectric constant continuously increases with the thickness. This is interpreted in terms of effects due to a low permittivity interfacial layer in series with the ferroelectric bulk. The linear fit of the reciprocal of capacitance vs. thickness leads to a true dielectric constant of the ferroelectric of 774 and interfacial capacitance of 14.6 nF. The leakage current properties also depend on thickness and temperature. The calculated interfacial potential barrier height amounts to 0.81 and 0.74 eV, respectively for erbium doped and pure PZT thin films.  相似文献   

7.
Bi(Zn0.5,Ti0.5)O3 (BZT) doped Pb(Zr0.4,Ti0.6)O3 (PZT) films were fabricated using a chemical solution deposition method and were characterized intensively in the present work. It was discovered that the room temperature remnant polarization and zero-field longitudinal piezoelectric constant of the BZT-doped PZT film were enhanced by 23% and 30%, respectively, as compared with those of the undoped PZT film prepared under the same experiment conditions. In order to explain the improved ferroelectric properties, the phase structures of the BZT-PZT and undoped PZT films were experimentally investigated in a broad temperature range (from 30 to 600 °C) by using the high temperature two-dimensional X-ray diffraction method. It was found that the improvement in ferroelectricity does not correspond to an elevated Curie temperature (TC) or a substantially larger tetragonality (c/a). The difference on the change of TC by doping of Bi-based perovskites in PZT solid solutions between this work and some previous investigations was explained on the basis of Zr/Ti ratio, and the necessity of an in-depth theoretical investigation was addressed.  相似文献   

8.
在低成本的石英玻璃衬底上制备高性能电光薄膜非常有吸引力。本文采用溅射方法,并结合Pb3O4气氛退火工艺,在ITO/石英玻璃衬底上制备锆钛酸铅镧(PLZT 8/65/35)薄膜。结果表明:在优化工艺条件下,薄膜为(110)方向择优生长,表面均方根粗糙度为3.1nm,可见光范围内透过率为81.3%,消光系数为0.003。这种表面光滑和高光学性能的PLZT薄膜在集成光学和光电子器件具有重要的应用潜力。  相似文献   

9.
Lead zirconate titanate (PZT, 52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition for printed wiring board embedded capacitor applications. Phase development, dielectric properties, and leakage characteristics of capacitors were investigated, in particular as a function of the process temperature. Dielectric properties of the capacitors were dependent on the crystallization temperature, and capacitance densities of more than 350 nF/cm2 and loss tangent of less than 0.03 were measured for capacitors crystallized below 600 °C. Lowest leakage current densities (around 2 × 10− 7 A/cm2 at 10 V direct current (DC)) and highest breakdown fields could be obtained for capacitors crystallized at 650 °C.Capacitors with different thickness and a two-layer capacitor model were used in analyzing the interface layer between PZT and the underlying electroless Ni. From the capacitance and leakage measurements, it is suggested that the interface reaction layer has low permittivity (K around 30) and high defect concentration, which has an important effect on the electrical properties of capacitors. This interface is from the reaction of the electroless nickel layer with the adjacent PZT, and may specifically be moderated by the nickel phosphide (Ni-P) phase, transformed from amorphous Ni during the annealing step.The results have significant implications for embedded capacitors in printed wiring boards. They demonstrate that the process can be tuned to produce either voltage independent capacitors with low leakage and high breakdown fields (above 30 V DC), or the more usual hysteretic, switching, ferroelectric capacitors with higher capacitance densities.  相似文献   

10.
Amorphous Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared on the Pt/Ti/SiO2/Si substrates by radio-frequency magnetron sputtering at room temperature. After rapid thermal annealing (RTA) and conventional furnace annealing (CFA) at different temperatures, the films were transformed into polycrystalline PZT thin films with (111) and (100) orientation, respectively. The phase formation and ferroelectric domains correlated with different orientation were systematically investigated by X-ray diffraction and piezoresponse force microscopy. The results showed that the perovskite PZT crystal with [111] orientation hetero-nucleated preferentially on top of the PtPb intermetallic phase at the PZT/Pt interface during RTA process. It is of interest to find that the domain self-organized into a structure with rounded shape at the early stage of crystallization. While the nucleation of the films treated by CFA dominantly homo-nucleated, thus the (100) orientation grains with minimum surface energy were easy to grow. The texture effects on ferroelectric properties of PZT films were also discussed in relation to the domain structure.  相似文献   

11.
本文采用锆钛酸铅、钛酸铋钠和钛酸钡三种不同铁电阴极材料,进行了电子发射试验,测定了电子发射电流密度,并对其在电子发射试验时的波形进行了分析讨论.结果认为:锆钛酸铅材料的电子发射电流密度略优于其他两种材料,但从无铅化角度来讲,钛酸钡与钛酸铋钠材料将有望取代现有的锆钛酸铅铁电阴极材料.  相似文献   

12.
Lead zirconate titanate (PZT) thin films of thickness 420 nm were deposited on Pt/Ti/SiO2/Si substrate using a spin coating sol-gel precursor solution, and then annealed using 2.45 GHz microwaves at a temperature of 450 °C for 30 min. The film has a high perovskite content and high crystallinity with a full width at half maximum of 0.35°. The surface roughness of the PZT thin film was 1.63 nm. Well-saturated ferroelectric properties were obtained with a remanent polarization of 46.86 μC/cm2 and coercive field of 86.25 kV/cm. The film also exhibited excellent dielectric properties with a dielectric constant of 1140 and a dissipation factor of 0.03. These properties are superior to those obtained by conventional annealing at a temperature of 700 °C for 30 min.  相似文献   

13.
B-site modification lead strontium zirconate titanate Pb0.4Sr0.6ZrxTi1 − xO3 (PSZT, x = 0-0.7) thin films were prepared on Pt/TiO2/SiO2/Si substrates by a sol-gel method. The XRD results indicate that paraelectric PSZT thin films at room temperature are obtained as x approaches 0.2. The temperature-dependent dielectric and hysteresis loop measurements reveal that the thin films have diffuse phase transition characteristics and relaxor-like behavior with nano-polar regions in the paraelectric films at room temperature. The Curie temperature of the PSZT thin films varies with the Zr contents, exhibiting a complex trend. This can be attributed to two competitive factors: higher mobility of Ti4+ than Zr4+ and smaller open space left for the displacement of Ti ions with the increase of Zr content. The further increase of the Zr contents leads to the simultaneous decrease of dielectric constant, dielectric loss and tunability. PSZT (x = 0.4) thin film shows the largest figure of merit of 24.3 with a moderate tunability of 55.8% and a dielectric loss of 0.023. This suggests that B-site ions have different roles in modifying the electrically tunable performance of PSZT thin films for tunable microwave device applications.  相似文献   

14.
We have deposited ferroelectric (FE) Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films on nickel substrates by chemical solution deposition. Energy density of ≈ 46 J/cm3 has been measured with 1.15-µm-thick PLZT/LNO/Ni film-on-foil capacitors. A series of highly accelerated lifetime tests were performed to determine the reliability of these FE film-on-foil capacitors under high temperature and high field stress. Samples were exposed to temperatures ranging from 100 to 150 °C and electric fields ranging from 8.7 × 105 V/cm to 1.3 × 106 V/cm. The breakdown behavior of the FE PLZT film-on-foil capacitors was evaluated by Weibull analysis. The activation energy was determined to be ≈ 0.35 eV when an electric field of 1.05 × 106 V/cm was applied. The voltage acceleration factor was ≈ − 6.3 at 100 °C. The mean time to failure was projected to be > 3000 h at 100 °C with a dc electric field of ≈ 2.6 × 105 V/cm.  相似文献   

15.
The residual stress of multilayers in piezoelectric microelectromechanical systems structures influences their electromechanical properties and performance. This paper describes the development of residual stress in 1.6 μm Pb(Zr0.52,Ti0.48)O3 (PZT)/0.3 μm ZrO2/0.5 μm SiO2 stacks for microactuator applications. The residual stresses were characterized by wafer curvature or load-deflection measurements. PZT and zirconia films were deposited on 4-in. (100) silicon wafers with 0.5 μm thick thermally grown SiO2 by sol–gel processes. After the final film deposition, the obtained residual stress of PZT, ZrO2, and SiO2 were 100–150, 230–270, and − 147 MPa, respectively. The average stress in the stack was  80 MPa. These residual stresses are explained in terms of the thermal expansion mismatch between the layers and the substrate. Load-deflection measurements were conducted to evaluate localized residual stresses using released circular diaphragms. The load-deflection results were consistent with the average stress value from the wafer curvature measurements. It was found that more reasonable estimates of the stack stresses could be obtained when mid-point vertical deflection data below 6 μm were used, for diaphragms 0.8–1.375 mm in diameter.  相似文献   

16.
In this paper, platinum/titanium (Pt/Ti) film was introduced as a residual stress balance layer into wafer scale thick lead zirconate titanate (PZT) film fabrication by sol-gel method. The stress developing in PZT film's bottom electrode as well as in PZT film itself during deposition were analyzed; the wafer curvatures, PZT crystallizations and PZT electric properties before and after using Pt/Ti stress balance layer were studied and compared. It was found that this layer is effective to balance the residual stress in PZT film's bottom electrode induced by thermal expansion coefficient mismatch and Ti diffusion, thus can notably reduce the curvature of 4-in. wafer from − 40.5 μm to − 12.9 μm after PZT film deposition. This stress balance layer was also found effective to avoid the PZT film cracking even when annealed by rapid thermal annealing with heating-rate up to 10.5 °C/s. According to X-ray diffraction analysis and electric properties characterization, crack-free uniform 1-μm-thick PZT film with preferred pervoskite (001) orientation, excellent dielectric constant, as high as 1310, and excellent remanent polarization, as high as 39.8 μC/cm2, can be obtained on 4-in. wafer.  相似文献   

17.
Lead zirconate (PbZrO3; PZO) fibers were synthesized by the electrospinning method using a solution that contained 5 wt% poly(ethylene oxide) (PEO) in ethanol and a sol–gel solution of PZO. Some parameters varied, for example, the ratio between PEO and PZO, concentrations of the precursor solution, flow rate, and calcination temperature. The as-spun and calcined PZO/PEO composite fibers were characterized by TG-DTA, X-ray diffraction, FT-IR, SEM and TEM. PZO fibers were obtained successfully with a well-developed perovskite structure after as-spun PZO/PEO composite fibers were calcined using the PZO/PEO volume ratio of 10:3 at a PZO concentration of 1.0 M at 650 °C for 4 h. Stable nanofibers were produced with an average diameter of 300 ± 64 nm. Additionally, the PZO fibers showed a Curie temperature that rose by nearly 13 °C, when comparing with a normal PZO particle.  相似文献   

18.
The results of the electric and magnetic measurements performed on PbZr0.2Ti0.8O3-BiFeO3 symmetric structures, deposited on Pt/Si wafers, were compared for different number of layers in order to analyse the effect of interfaces over the macroscopic properties. It was found that the shape and magnitude of the capacitance-voltage characteristic, as well as the shape and parameters of the ferroelectric and magnetic hysteresis, depend on the number of interfaces in the intended multilayer structure. A temperature induced gradual transition from a magnetically disordered spin glass like phase of low temperature to an uncompensated antiferromagnetic phase at room temperature takes place in the BiFeO3 films, under low applied magnetic fields. A partial ferromagnetic like order can be obtained at low temperatures by increasing the field. The observed changes in the electric and magnetic behaviour of the systems were related to an increased degree of disorder for electric dipoles and magnetic moments, due to the increased number of layers and crystallization treatments.  相似文献   

19.
Polycrystalline Pb(Zr0.3,Ti0.7)O3 (PZT) thin films were prepared on platinized silicon wafers by chemical solution deposition (CSD) with thicknesses down to 30 nm. Electrical measurements with the superior ferroelectric properties of high remanent polarization (Pr) and low coercive field (Ec) will be presented for thicknesses down to 50 nm. In order to decrease the thickness of electrically dense PZT thin films by the CSD method experiments have been performed by using different degrees of dilutions of the precursor stock solutions, i.e. instead of diluting the PZT stock solution with 2-butoxyethanol in the standard ratio of 1:1 before the spin-on process, the dilution is increased stepwise to a ratio of 1:4. In addition the films have been annealed in nitrogen atmosphere instead of the typical oxygen atmosphere which has been shown to strongly improve a preferential (111) orientation of the PZT film [G. J. Norga, L. Fe, Mat. Res. Soc. Symp. Proc. Vol. 655, CC9.1.1 (2001)]. The approach of Norga et al. is confirmed and complemented by means of electrical hysteresis measurements.  相似文献   

20.
Lead zirconate titanate powders of different compositions varying from 50 to 55 atomic percent zirconium in the solid solution have been prepared by spray-drying technique. The compositions were varied by changing the zirconium-to-titanium ratio in the solid solution and also with the addition of strontium. The amorphous character of the as-prepared powders and the formation of single phase lead zirconate titanate during calcination were also confirmed by x-ray diffraction technique. These powders were then converted to piezoelectric ceramics by compaction and sintering followed by electroding and poling. Effect of the variation of zirconium to titanium ratio and strontium additions on the piezoelectric properties of the finished ceramics have been explained on the basis of improved sintering, uniform grain size, formation of morphotropic phase boundary and subsequent shift to rhombohedral structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号