首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The triboelectric nanogenerator (TENG), based on the well-known triboelectric effect and electrostatic induction effect, has been proven to be a simple, cost effective approach for self-powered systems to convert ambient mechanical energy into electricity. We report a flexible and transparent paper-based triboelectric nanogenerator (PTENG) consisting of an indium tin oxide (ITO) film and a polyethylene terephthalate (PET) film as the triboelectric surfaces, which not only acts as an energy supply but also as a self-powered active sensor. It can harvest kinetic energy when the sheets of paper come into contact, bend or slide relative to one another by a combination of vertical contact-separation mode and lateral sliding mode. In addition, we also integrate grating-structured PTENGs into a book as a self-powered anti-theft sensor. The mechanical agitation during handling the book pages can be effectively converted into an electrical output to either drive a commercial electronic device or trigger a warning buzzer. Furthermore, different grating-structures on each page produce different numbers of output peaks by sliding relative to one another, which can accurately act as a page mark and record the number of pages turned. This work is a significant step forward in self-powered paper-based devices.  相似文献   

2.
    
With the development of the smart ocean which contains a large number of wireless sensor nodes, it is a great demand to develop high-performance marine energy harvesters for powering those sensors. In this work, a highly adaptive hybrid nanogenerator based on triboelectric nanogenerator and electromagnetic generator is proposed. The hybrid nanogenerator can be used for scavenging both wind energy and ocean current energy. The peak power of the hybrid nanogenerator can reach 449.74 mW, which can recharge a 50 mAh-3.7 V Lithium battery. In addition, it is found that there is a linear relationship between the voltage frequency of the triboelectric nanogenerator and the rotation speed, indicating the hybrid nanogenerator can serve as a flow velocity sensor. A fully self-powered marine wireless sensor node is fabricated based on the hybrid nanogenerator and management circuit. The demonstrations show that the present hybrid nanogenerator has great potential applications for marine wireless sensing in the scenarios of nearshore, offshore, and underwater.  相似文献   

3.
    
Developing an applicable triboelectric nanogenerator (TENG) for train wheel energy harvesting is a key step to meet the urgent need of wheel safety monitoring. Herein, an innovative design of free-fixed TENG (FF-TENG) is reported, without a serious negative impact on the wheel. The key of this design is the magnets fixed on the device and bogie, providing attractive force to immobilize the stator. With a rotational structure, FF-TENG can provide a high short-circuit current of 55 µA, an open-circuit voltage of 500 V, and a charge of 235 nC at a rotation speed of 400 rpm. At an external load resistance of 10 MΩ, FF-TENG delivers the maximum power of 15.68 mW. Furthermore, the superior robustness of FF-TENG in vibration environment is proved. In addition, a power management circuit designed by LTC 3588 is tested for more efficient capacitor charging, leading to better performance to power electronics. Finally, a self-powered real-time wheel temperature and wheel speed monitoring system is developed with FF-TENG as a safety alert demo for feasibility demonstration. Given the rational structure design and high performance, this work paves a practical way for TENGs in the field of intelligent transportation.  相似文献   

4.
Hydrogen detection with a high sensitivity is necessary for preventing potential explosions and fire.In this study,a novel ZnO tribotronic transistor is developed by coupling a ZnO field effect transistor (FET) and triboelectric nanogenerator in free-standing mode and is used as a sensor for hydrogen detection at room temperature.Tribotronic modulated performances of the hydrogen sensor are demonstrated by investigating its output characteristics at different sliding distances and hydrogen concentrations.By applying an external mechanical force to the device for sliding electrification,the detection sensitivity of the ZnO tribotronic transistor sensor is improved,with a significant enhancement achieved in output current by 62 times at 500 ppm hydrogen and 1 V bias voltage.This study demonstrates an extension of the applications of emerging tribotronics for gas detection and a prospective approach to improve the performance of the hydrogen sensor via human-interfacing.  相似文献   

5.
6.
7.
    
Gyroscope is one of the most widely distributed and utilized motion sensors among Internet of Things sensing for sports health, artificial intelligence, military management, civil defense, etc. Preparing a thoroughly self-powered gyroscope sensor based on triboelectric nanogenerator (TENG) with superior stability is of innovative research significance. In this work, a self-powered gyroscope angle sensor (SGAS) based on resistive impedance matching effect of TENG is proposed to detect relative rotation angle, performing as an attitude indicator applied in the flight control system of the unmanned aerial vehicle. The ultrahigh sensitivity of 67.3 mV deg−1 and outstanding linearity between the output voltage and rotation angle are obtained. Moreover, an instantaneous response within 20 ms can be observed during the process when gradually increasing the rotation angle from 0° to 260°. By lighting up different light-emitting diode patterns representing certain rotation angles, demonstrations on quantitative sensing alerts are also realized. The SGAS can operate without batteries or monitoring circuits, accompanied with excellent reliability and sensitivity, which is favorable for future automatic navigation control systems.  相似文献   

8.
    
With the rapid development of industry and information technology, rough challenges have been put forward for the traditional sensor technology to meet the increasingly complex and diverse application demands in actual production and daily life, and the widely distributed sensor network also faces complex power supply and maintenance problems. As a new energy conversion technology, triboelectric nanogenerators (TENGs) based on triboelectrification and electrostatic induction effect can respond to the weak mechanical stimuli in the surrounding environment and generate corresponding electrical signals to realize the sensing function without external power supply. In addition, TENGs have the advantages of wide selection of fabrication materials, flexible and diverse fundamental modes, which can be customized for different applications and realize different sensing functions. In recent years, triboelectric sensors based on TENGs have developed rapidly, and researchers have developed variable triboelectric sensors for different application scenarios. In this paper, the developed triboelectric sensos have been classified into different categories, the advanced strategy to prepare advanced triboelectric materials and technology used for manufacturing integration have been introduced. This work summarizes the main applications of triboelectric sensors and put forward the current challenges, so as to provide guidance and instructions for the future development of triboelectric sensors.  相似文献   

9.
    
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy from the ambient environment. However, developing tribopositive materials with strong piezoelectric effects and high electron-donating ability still remains a challenge. Herein, poly(ethylene glycol) monomethyl ether (mPEG) to soft poly(lactic acid) (PLA) is adopted, then PLA/mPEG nanofibers are fabricated under electrospinning and used as the tribopositive material for fabricating robust power density TENGs. The crystallinity and dynamic mechanical properties of PLA/mPEG nanofibers are investigated. The results revealed that the incorporation of mPEG provided an effective approach to elevate the electron-donating ability and charge transfer efficiency in PLA. The PLA/mPEG-based TENGs achieved a high open-circuit voltage of 342.8 V, a short-circuit current of 38.5 µA, and a maximum power density of 116.21 W m−2 over a 2 cm2 contact area at an external load of 106 Ω, respectively. Strikingly, excellent stability and durability are demonstrated after continuous cycles up to 104 cycles. Noteworthy, the TENGs are explored for self-powered sensing applications, with seven TENG units integrated to act as self-powered sensors playing music through buzzers when pressed by fingers. Eventually, this work provides new insights into tuning the structures and properties of electrospun polymers to reinforce the TENG output and self-powered systems.  相似文献   

10.
    
Acceleration sensors have wide applications in earthquake warning, human motion recognition, vehicle restraint system, etc. However, the existing commercial acceleration sensors have some limitations on needing an external power supply, high fabrication cost, and small signal when self-powered. Here a grating-structured freestanding triboelectric nanogenerator (GF-TENG) capable of sensing displacements, velocities, and accelerations in real-time is presented with self-powered, low cost, and sufficiently large signal. The slider with grating-structured electrodes of GF-TENG sliding over the stator with another grating-structured electrode generates the periodic open-circuit voltage due to electrostatic induction. By recognizing the shape of open-circuit voltage, it could sense the acceleration in real time even at scales down to hundred microns through systematic optimization of simulations and experiments. Furthermore, the acceleration sensing range could be expanded to the desired ranges, such as 5.0 to 45.0 m s–2, by assembling springs and GF-TENG into a grating-structured TENG-based acceleration sensor (GTAS). Moreover, GTAS is demonstrated to sense the vehicle motion and be a part of the vehicle restraint system on a model car. This work reports a new self-powered acceleration sensor with sufficiently large outputs for real-time motion sensing and collision detection, which could be further applicated for robotics and human motion recognition.  相似文献   

11.
    
The rapid growth of Internet of Things (IoT) in recent years has increased demand for various sensors to collect a wide range of data. Among various sensors, the demand for force sensors that can recognize physical phenomena in 3D space has notably increased. Recent research has focused on developing energy harvesting methods for sensors to address their maintenance problems. Triboelectric nanogenerator (TENG) based force sensors are a promising solution for converting external motion into electrical signals. However, conventional TENG-based force sensors that use the signal peak can negatively affect data accuracy. In this study, a Scott–Russell linkage-inspired TENG (SRI-TENG) is developed. The SRI-TENG has completely separate signal generation and measurement sections, and the number of peaks in the electrical output is measured to prevent disturbing output signals. In addition, the lubricant liquid enhances durability, enabling stable force signal measurements for 270 000 cycles. The SRI system demonstrates consistent peak counts and high accuracy across different contacting surfaces, indicating that it can function as a contact material-independent self-powered force sensor. Furthermore, using a deep learning method, it is demonstrated that it can function as a multimodal sensor by realizing the tactile properties of various materials.  相似文献   

12.
13.
    
In a daily environment, several vibration energies have low amplitude and broad range of frequencies, and it is crucial to harvest them efficiently in a single triboelectric nanogenerator (TENG). Here, a multi-degree of freedom (DOF) vibration system is coupled with TENG to make several resonant frequencies in a single device. When the number of DOF increases in the system, the number of resonant frequencies also increases. These resonant frequencies are calculated by MATLAB software using the masses and spring constant of DOF vibration system. With the masses of 20 g and the spring constant of 82.712 N m−1, it is found that 1-DOF has one resonant frequency (20.47 Hz), 2-DOF has two resonant frequencies (12.63 and 33.17 Hz), and 3-DOF has three resonant frequencies (9.12, 25.55, and 36.87 Hz). At each resonant frequency, the displacement of all weight layers increases due to the constructive interference of resonance, resulting in higher output than other frequencies at the frequency sweep experiment. In addition, the magnitude and phase of output signals obtained in friction regions are evaluated through COMSOL simulation. A self-powered wireless sensor module with 3-DOF TENGs to detect the humidity/temperature and transmit the data every 30 min by harvesting vibration energy is demonstrated.  相似文献   

14.
随着柔性可穿戴电子设备的高速发展,众多可穿戴电子产品已成为人们日常生活的一部分。摩擦纳米发电机(triboelectric nanogenerator, TENG)为有效解决供电难题提供了新方法。基于TENG技术,利用织物将身体运动转化为电能与传感信息,机电转化纤维(mechano-electric conversion fibers, MECFs)应运而生。MECFs能够在高效收集身体低频、不规则机械能的同时,确保舒适、透气、安全且耐用,实现了自充电供能和自驱动传感两大功能。MECFs催生了一个以人体为中心、自我维持的能量和信息供给系统。基于MECFs的工作原理,起电材料的选择与设计是影响MECFs性能的关键因素,MECFs的多维度结构设计进一步提升了其能量转换效率。目前,MECFs已经在智能生活中的广泛应用,特别是自充电供能和自供能传感。然而,尽管取得了显著进步,新型MECFs的发展仍然面临着诸多挑战。展望未来,在人工智能和物联网的加持下,MECFs将继续向智能化、个性化的道路迈进。  相似文献   

15.
    
Nowadays, aiming to fight against environmental pollution and energy crisis, a great amount of effort has been performed on self‐powered devices. Herein, assembling a wind‐driven triboelectric nanogenerator (TENG) and a pressure sensitive elastic polyimide (PI)/reduced graphene oxide (rGO) foam together, a self‐powered pressure sensor system has been designed and investigated. Employing Ag nanoparticles and nylon film as electrode and vibration membrane, the TENG can generate desirable output. Meanwhile, the PI/rGO foam acts as the pressure sensitive unit. Integrating a bulk of PI/rGO foam (14 mm × 14 mm × 30 mm), the TENG could generate output voltage and current up to 130 V and 7.5 µA with an effective working area of 100 mm × 15 mm. Additionally, the as‐fabricated device presents various stress sensing scopes and sensitivities, when different heights of foams are integrated on the TENG. The self‐powered pressure sensor achieves a great combination between new clean energy resources and traditional pressure sensor.  相似文献   

16.
Here, we report a device for the detection of the proteolytic enzyme trypsin, which is a biomarker for pancreatitis. The sensor is self-powered, easy to use, and signals the presence of trypsin via a light-emitting diode (LED) that is visible to the unaided eye. Assay time is ~3 h, and the limit of detection is 0.5 μg/mL, which is within the range required for detection of trypsin at levels signaling acute pancreatitis. The sensing mechanism relies on trypsin digestion of a gelled protein layer. Partial digestion of the protein layer permits hydroxide penetration and subsequent etching of an underlying Al membrane. Degradation of both the protein and Al layers exposes an underlying Mg anode and closes an electrochemical circuit that produces ~2.2 V. This is sufficient voltage to illuminate the LED. A logarithmic relationship is observed between the time required for LED illumination and trypsin concentration. The device is equally effective for trypsin dissolved in buffer or serum media.  相似文献   

17.
Wen D  Deng L  Guo S  Dong S 《Analytical chemistry》2011,83(10):3968-3972
A self-powered electrochemical sensor has been facilely designed for sensitive detection of Hg(2+) based on the inhibition of biocatalysis process of enzymatic biofuel cell (BFC) for the first time. The as-prepared one-compartment BFC, which was consisted of alcohol dehydrogenase supported on single-walled carbon nanohorns-based mediator system as the anode and bilirubin oxidase as the cathodic biocatalyst, generated an open circuit potential (V(oc)) of 636 mV and a maximum power density of 137 μW cm(-2). It was interestingly found that the presence of Hg(2+) would affect the performance of the constructed BFC (e.g., V(oc)). Taking advantage of the inhibitive effect of Hg(2+), a novel self-powered Hg(2+) sensor has been developed, which showed a linear range of 1-500 nM (R(2) = 0.999) with a detection limit of 1 nM at room temperature. In addition, this BFC-type sensor exhibited good selectivity for Hg(2+) against other common environmental metal ions, and the feasibility of the method for Hg(2+) detection in actual water samples (i.e., tap, ground, and lake water) was demonstrated with satisfactory results.  相似文献   

18.
基于纳米材料与纳米结构的纳米电源研究进展   总被引:1,自引:0,他引:1  
随着现代社会的发展和能源危机的来临, 探索和寻找新的能源材料, 开发新能源是人类的永恒课题。自2006年基于ZnO纳米线压电效应的压电式纳米电源问世以来, 又研制出多种基于纳米材料和纳米结构, 以及不同纳米效应的新型纳米电源。本文综述了近10年来, 人们在纳米电源领域的研究成果; 系统介绍了基于压电效应、摩擦效应以及石墨烯能带调控纳米电源的原理和特点, 为今后新型纳米电源的开发提供思路和参考。  相似文献   

19.
    
Triboelectric Nanogenerator (TENG) has proven highly effective in converting mechanical energy into electrical energy. Previous research on manipulating microstructure for performance enhancement primarily focused on the surface of TENGs. In this study, an innovative bottom–up strategic design to control the internal nano-architecture for the enhanced output of TENG is proposed. This multiscale structural design strategy consists of defect chemistry (angstrom-scale), surface modification (nano-scale), and spatial regulation of nanoparticles (meso-scale), which helps explore the optimal utilization of TENG's internal structure. After fine-tuning the nano-architecture, the output voltage is significantly increased. This optimized TENG serves as a robust platform for developing self-powered systems, including self-powered electrochemical chlorination systems for sterilization. Additionally, through the utilization of multiscale simulations (density functional theory, all-atom molecular dynamics, and dissipative particle dynamics), the underlying mechanisms governing how the optimized nanoparticle–polymer interface and spatial arrangement of nanoparticles influence the storage and transfer of charges are comprehensively elucidated. This study not only demonstrates the effectiveness of manipulating internal nano-architecture to enhance TENG performance for practical applications but also provides invaluable insights into structural engineering for TENG advancement.  相似文献   

20.
    
The integration of bio-based materials into triboelectric nanogenerators (TENGs) for energy harvesting from human body motions has sparked considerable research attention. Here, a silanated cellulose nanofibril (SCNF) aerogel is reported for structurally reliable TENGs and reversely compressible Taekwondo scoring sensors under repeated impacts. The preparation of the aerogel involves silanizing cellulose nanofibers (CNFs) with vinyltrimethoxysilane (VTMS), following by freeze–drying and post-heating treatment. The SCNF aerogel with crosslinked physico-chemical bonding and highly porous network is found to exhibit superior mechanical strength and reversible compressibility as well as enhanced water repellency and electron-donating ability. The TENG having a tribo-positive SCNF layer exhibits exceptional triboelectric performances, generating a voltage of 270 V, current of 11 µA, and power density of 401.1 mW m−2 under an applied force of 8 N at a frequency of 5 Hz. With its inherent merits in material composition, structural configuration, and device sensitivity, the SCNF TENG demonstrates the capability to seamlessly integrate into a Taekwondo protection gear, serving as an efficient self-powered sensor for monitoring hitting scores. This study highlights the significant potential of a facilely fabricated SCNF aerogel for the development of high-performance, bio-friendly, and cost-effective Bio-TENGs, enabling their application as self-powered wearable devices and sports engineering sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号