首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous carbon materials formed by nanosized particles have been synthesized by means of a nanocasting technique based on the use of mesostructured silica materials as templates. We found that the modification of the chemical characteristics of the surfactant employed allows mesostructured silica materials with particle sizes <100 nm to be synthesised. The mesoporous carbons obtained from these silica materials retain the structural properties of the silica used as template and consequently they have a particle size in the 20-100 nm range. These carbons exhibit large BET surfaces areas (up to 1300 m2 g−1) and high pore volumes (up to 2.5 cm3 g−1), a framework confined porosity made up of uniform mesopores (3.6 nm) and an additional textural porosity arising from the interparticle voids between the sub-micrometric particles. The main advantage of nanometer-sized mesoporous carbons in relation to the micrometer-sized carbons is that they have enhanced mass transfer rates, which is important for processes such as adsorption or catalysis.  相似文献   

2.
Hard template-based fabrication of mesoporous carbon unavoidably goes through the removal process of the template to generate template-free carbon replica, including troublesome disposal of template waste often accompanied by toxic etchant, which not only increases the fabrication cost of materials but also raises serious environmental concerns. As a novel strategy to overcome such problem, a direct in situ synthesis approach using silica waste in carbon/silica nanocomposite as a silica source and cetyltrimethylammonium bromide as a porogen under basic condition is reported in this study for the generation of a new composite composed of mesoporous MCM-41 silica and hollow carbon capsule. The resultant MCM-41/carbon capsule composite offers a 3-D interconnected multimodal pore system, which discloses a wide pore range of ordered uniform mesopores (ca 2.3?nm) resulting from MCM-41 silica and disordered uniform mesopores (ca 3.8?nm) and macropores (ca 300?nm) from hollow mesoporous carbon, respectively. The composite has a high specific surface area (ca 909?m2/g) and large pore volume (ca 0.73?cm3/g). The in situ transformation approach of silica waste into valuable mesoporous silica is considered as a promising scalable route for efficient new multi-functional composites useful for a wide range of applications such as adsorption of volatile organic compounds and radioactive wastes produced in a nuclear facility.  相似文献   

3.
Reassembling of exfoliated graphite oxide (GO) layers by contacting with titania clear sol gives a novel nanoporous composite of carbon nanosheets and functional titania nanoparticles, in which titania particles with an evident brookite structure or a mixed phases of anatase and brookite are encapsulated on the basal plane of and in between the inner surfaces of carbon nanosheets without aggregating together or depositing only on the edges of carbon nanosheets. These composites successfully combine properties of carbon nanosheets and titania nanoparticles, exhibiting an enhanced adsorptivity and a good photocatalytic activity toward organic dyes due to its unique structure, better porosity, and compatible surface affinity.  相似文献   

4.
Mesoporous carbon spheres serving as electrode materials for supercapacitors were synthesized by a facile polymerization-induced colloid aggregation method using melamines as a carbon precursor and commercial colloidal silica as a silica source for hard template. After the carbonization of as-formed resins-template composites at 1000 °C and the removal of the silica template by hydrofluoric acid, the resulting mesoporous carbon spheres with a diameter size of ∼5 μm, specific surface area (up to 1280 m2/g) and uniform pore size as large as 30 nm could be obtained. Due to the enriched nitrogen content and the large pore size of the mesoporous carbon spheres affecting the surface wettability, resistance, and ion diffusion process in the pores, the mesoporous carbon spheres showed a high specific capacitance of 196 F/g in 5 mol/l H2SO4 electrolytes at a discharge current density of 1 A/g.  相似文献   

5.
A new type of hierarchically porous materials is fabricated by assembling mesoporous nanoparticles via spray drying. Well-dispersed mesostructured silica nanoparticles (MSN), whose particle size distribution was narrow in the range of 20 nm and 50 nm, were prepared by a thermal deposition method. By spray drying a MSN suspension, MSN were assembled into spherical secondary particles. After calcination, the spherical particles have two types of mesopores, mesopores of 3 nm in size inside of calcined MSN and larger inter-nanoparticle mesopores of about 15-20 nm. This hierarchical pore system should provide nanospaces for efficient mass transport of guest species with different sizes.  相似文献   

6.
Silicon is considered as one of the most promising anodes for Li-ion batteries (LIBs),but it is limited for commercial applications by the critical issue of large volume expansion during the lithiation.In this work,the structure of silicon/carbon (Si/C) particles on graphene sheets (Si/C-G) was obtained to solve the issue by using the void space of Si/C particles and graphene.Si/C-G material was from Si/PDA-GO that silicon particles was coated by polydopamine (PDA) and reacted with oxide graphene (GO).The Si/C-G material have good cycling performance as the stability of the structure during the lithiation/dislithiation.The Si/C-G anode materials exhibited high reversible capacity of 1910.5 mA h g-1 and 1196.1 mA h g-1 after 700 cycles at 357.9 mA g-1,and have good rate property of 507.2 mA h g-1 at high current density,showing significantly improved commercial viability of silicon electrodes in high-energy-density LIBs.  相似文献   

7.
介孔二氧化硅材料具有巨大的孔隙率、开放的孔道结构、易于改性的孔道表面以及良好的生物相容性, 广泛用于药物传递、吸附分离以及催化等领域。本研究通过非极性溶剂辅助共组装法合成了具有较大孔径(6.9 nm)和比表面积(615 m2/g)的介孔二氧化硅微球。采用纳米浇铸的方法, 成功地将左旋-薄荷醇负载到该材料的孔内。进一步通过界面聚合的方法, 在所得微球的表面涂覆一层聚多巴胺(PDA)涂层, 从而将薄荷醇封装在微球的孔道内。利用PDA作为半透膜, 研究了复合微球在不同温度的空气吹扫下释放薄荷醇的行为, 发现在相对适宜的温度下PDA涂层有利于薄荷醇的可控缓慢释放。这些研究结果表明基于聚多巴胺修饰的介孔二氧化硅材料有望用于开发食品和医药等领域的缓释制剂。  相似文献   

8.
以氧化石墨烯(GO)和钛酸四丁酯(Ti(OBu)4)作为初始反应物,采用乙醇溶剂热法合成了石墨烯/纳米TiO2复合材料,并利用XRD、FE-SEM、TEM、RAMAN和XPS等手段对石墨烯/纳米TiO2复合材料的晶体结构、形貌及元素形态等性质进行了表征,同时将复合材料应用于光催化降解甲基橙溶液,进行光催化性能评价。结果表明:Ti(OBu)4在乙醇溶剂中通过化学静电引力吸附到GO表面,经过溶剂热反应,GO被还原成石墨烯的同时,石墨烯的表面负载生长锐钛矿TiO2颗粒。随着溶剂热反应时间的延长,GO表面的活性基团减少,还原更加彻底,同时TiO2晶粒有一定的增大趋势;与纯TiO2相比,石墨烯/纳米TiO2复合材料光催化活性明显提高,石墨烯含量对复合材料的光催化活性有直接的影响。  相似文献   

9.
Due to its amphiphilic property, graphene oxide (GO) can achieve a variety of nanostructures with different morphologies (for example membranes, hydrogel, crumpled particles, hollow spheres, sack‐cargo particles, Pickering emulsions, and so on) by self‐assembly. The self‐assembly is mostly derived from the self‐concentration of GO sheets at various interfaces, including liquid‐air, liquid‐liquid and liquid‐solid interfaces. This paper gives a comprehensive review of these assembly phenomena of GO at the three types of interfaces, the derived interfacial self‐assembly techniques, and the as‐obtained assembled materials and their properties. The interfacial self‐assembly of GO, enabled by its fantastic features including the amphiphilicity, the negatively charged nature, abundant oxygen‐containing groups and two‐dimensional flexibility, is highlighted as an easy and well‐controlled strategy for the design and preparation of functionalized carbon materials, and the use of self‐assembly for uniform hybridization is addressed for preparing hybrid carbon materials with various functions. A number of new exciting and potential applications are also presented for the assembled GO‐based materials. This contribution concludes with some personal perspectives on future challenges before interfacial self‐assembly may become a major strategy for the application‐targeted design and preparation of functionalized carbon materials.  相似文献   

10.
Comparative research of matrix and bulk carbonization of some organic precursors (sucrose, acetonitrile) in silica mesoporous materials SBA-15 and KIT-6 was conducted. X-ray diffraction, nitrogen adsorption analysis, Raman spectroscopy were used for determination of the structural-sorption characteristics of the obtained materials. It was shown that the carbon mesoporous materials CMK-8 obtained in the mesopores of KIT-6 had higher adsorption characteristics because of features of three-dimensional cubic structure, larger pore volume and framework’s wall thickness. It was established that partially graphitized spatially well-organized carbon materials were formed as a result of pyrolysis of acetonitrile in the silica matrices SBA-15 and KIT-6. It was conditioned by the absence of considerable spatial limitations for growth of graphite structures on the initial stage of the synthesis when the pores of the matrix were not filled up with the organic precursor. Product of bulk carbonization of sucrose is compact carbon microporous framework with low sorption characteristics (micropore volume is 0.09 cm3/g).  相似文献   

11.
Hollow mesoporous carbon spheres (HMCSs) have been prepared by a simplified replication route from a solid silica core/mesoporous silica shell aluminosilicate (SCMS-Al) template, which was synthesized by directly incorporating aluminum species into the mesoporous framework during template synthesis. The size of HMCSs can be tuned between 80 and 470 nm by simply changing the diameters of SCMS-Al. The HMCSs have uniform mesopores with a narrow pore size distribution (3.4-4.1 nm), and high surface area, (890-1150 m2/g) and total pore volumes (0.75-1.15 cm3/g). The techniques of N2 sorption isotherms, TEM, EDX and SEM were used to characterize the as-synthesized spheres.  相似文献   

12.
ABSTRACT

The lateral size of the graphene oxide (GO) nanosheets could be controlled by preparation method, and a simple and effective strategy to adjust the lateral size of GO nanosheets by selecting suitable method is presented. The high shear method was introduced to produce GO nanosheets, and the GO nanosheets (few micrometres) prepared by high shear method is about one order of magnitude larger than GO nanosheets (few hundred nanometres) obtained by ultrasonic method, as evidenced by atomic force microscopy. The FTIR, XPS and Raman analysis revealed that there are no distinct differences in composition and functional groups between the GO nanosheets produced by high shear method and ultrasonic method. The cavitation in the procedure of ultrasonic method is favourable for GO exfoliation, but it also could result in damage to GO nanosheets. The shearing force in the process of high shear method is effective for GO delamination with minimal fragmentation. The results indicated that the high shear method proposed in this paper is an efficient exfoliation means to produce single-layer GO nanosheets.  相似文献   

13.
A strategy for synthesizing highly functionalized porous silica–carbon composites made up of a sulphur- or nitrogen-doped carbon layer coating the pores of two mesostructured silica samples (i.e. SBA-15 and KIT-6) is presented. The synthesis scheme involves several steps: a) infiltration of the silica pores by sulphur-rich (thiophene) or nitrogen-rich (pyrrole) monomers, b) in situ polymerization of these precursors to form polythiophene or polypyrrole, and c) carbonization of the polymers. The resulting silica–carbon composites contain ∼25 wt % of carbonaceous matter and a large number of nitrogen and sulphur functional groups attached to the deposited carbon (up to 4.2 wt % of nitrogen and 6.1 wt % of sulphur). The structural characteristics of the parent silica are retained in the composite materials, which exhibit high surface area, large pore volume and a well-ordered porosity made up of uniform mesopores.  相似文献   

14.
Fine-tuning strain and vacancies in 2H-phase transition-metal dichalcogenides, although extremely challenging, is crucial for activating the inert basal plane for boosting the hydrogen evolution reaction (HER). Here, atomically curved 2H-WS2 nanosheets with precisely tunable strain and sulfur vacancies (S-vacancies) along with rich edge sites are synthesized via a one-step approach by harnessing geometric constraints. The approach is based on the confined epitaxy growth of WS2 in ordered mesoporous graphene derived from nanocrystal superlattices. The spherical curvature imposed by the graphitic mesopores enables the generation of uniform strain and S-vacancies in the as-grown WS2 nanosheets, and simultaneous manipulation of these two key parameters can be realized by simply adjusting the pore size. In addition, the formation of unique mesoporous WS2@graphene van der Waals heterostructures ensures the ready access of active sites. Fine-tuning the WS2 layer number, strain, and S-vacancies enables arguably the best-performing HER 2H-WS2 electrocatalysts ever reported. Density functional theory calculations indicate that compared with strain, S-vacancies play a more critical role in enhancing the HER activity.  相似文献   

15.
采用简易溶剂热法成功制备出了氮掺杂石墨烯(N-GNSs), 结构表征显示其形貌良好。X射线光电子能谱(XPS)结果表明在溶剂热过程中, 氧化石墨烯表面的大部分含氧功能团已被成功除去, 而且二甲基甲酰胺中的氮原子通过吡咯氮和石墨氮的形式成功掺杂到石墨烯结构中。作为电极活性材料, N-GNSs展现出优异的电容特性, 在2 mol/L KOH电解液中电流密度为0.5 A/g时比电容可达181.3 F/g。此外, N-GNSs还展示出良好的循环稳定性, 2000次连续循环后容量仍保持为初始数值的92.5%。因此, 氮掺杂石墨烯是一种潜在的超级电容器电极材料。  相似文献   

16.
In this paper, atomic structure of single-layered graphene oxide (GO) and chemically reduced graphene oxide (CRGO) nanosheets was investigated using atomic force microscopy and scanning tunneling microscopy (AFM and STM). Furthermore, friction properties of the graphene and GO nanosheets were studied by frictional force microscopy (FFM). STM imaging provided direct evidence and the morphology was influenced by oxygen-containing groups and defects. The atomic scale structural disorder in a hexagonal two-dimensional network of carbon atoms changes the surface condition, which also caused the frictional property variations of the samples.  相似文献   

17.
ABSTRACT

As a two-dimensional nanomaterial, graphene oxide has attracted much attention for its use in reinforcing cementitious materials. However, the dispersion of graphene oxide in cementitious materials has been found unsatisfactory due to crosslinking of divalent calcium ions. In this study, we propose a modified mixing procedure to improve graphene oxide dispersion in cement mortar by utilizing silica sand to mechanically separate graphene oxide nanosheets. Apart from the improved graphene oxide dispersion, adhesion between sand and cement matrix is also believed to be enhanced due to the improved roughness of the sand surface. According to our mechanical properties study, with the introduction of 0.02% by weight graphene oxide in cement mortar, compressive strength was significantly improved by more than 25% and tensile splitting and flexural strength were improved by around 15%. In a microstructural investigation, the interfacial transition zone in cement mortar was found to be denser due to the addition of graphene oxide. Moreover, graphene oxide incorporated cement mortar also showed pore structure refinement and porosity reduction. Therefore, improvement in mechanical properties may result from an improved interfacial transition zone and a more refined pore structure with the introduction of a small quantity of well-dispersed graphene oxide nanosheets.  相似文献   

18.
Gelation is an effective way to realize the self‐assembly of nanomaterials into different macrostructures, and in a typical use, the gelation of graphene oxide (GO) produces various graphene‐based carbon materials with different applications. However, the gelation of MXenes, another important type of 2D materials that have different surface chemistry from GO, is difficult to achieve. Here, the first gelation of MXenes in an aqueous dispersion that is initiated by divalent metal ions is reported, where the strong interaction between these ions and ? OH groups on the MXene surface plays a key role. Typically, Fe2+ ions are introduced in the MXene dispersion which destroys the electrostatic repulsion force between the MXene nanosheets in the dispersion and acts as linkers to bond the nanosheets together, forming a 3D MXene network. The obtained hydrogel effectively avoids the restacking of the MXene nanosheets and greatly improves their surface utilization, resulting in a high rate performance when used as a supercapacitor electrode (≈226 F g?1 at 1 V s?1). It is believed that the gelation of MXenes indicates a new way to build various tunable MXene‐based structures and develop different applications.  相似文献   

19.
中孔活性炭材料的研究进展   总被引:4,自引:0,他引:4  
综述了国内外在中孔活性炭材料开发方面的研究进展。着重介绍了催化活化、界面活化、混合聚合物炭化、有机凝胶炭化、铸型炭化等孔径调控方法及其中孔形成机理。为控制活性炭材料孔径大小和分布,提高其中孔容积和吸附性能提供了参考。  相似文献   

20.
通过溶胶-凝胶法制备了孔径小于1 μm的多级孔径新型石墨烯气凝胶。制备过程中, 首先通过Nafion对氧化石墨烯(GO)表面进行化学修饰, 并利用乙二胺还原制备石墨烯水凝胶, 最终通过冷冻干燥形成石墨烯气凝胶。实验发现Nafion可以有效减少制备过程中氧化石墨烯的团聚, 使石墨烯气凝胶形成多级孔径形貌。所得石墨烯气凝胶的孔径可控制在1 μm以内, 远小于传统石墨烯气凝胶材料的孔径(20~100 μm)。这种具有独特结构的石墨烯气凝胶表现出优异的性能, 例如高比表面积, 高孔隙率, 其电化学电容性能相对传统气凝胶提高了约40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号