首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-range ordering of bulk-heterojunctions (BHJs) significantly facilitates exciton diffusion and dissociation as well as charge transport. A feasible bio-inspired strategy to realize such a heterostructure is crystallization in gel media where the growing host crystals incorporate the surrounding guest materials of gel networks. Until now, the host–guest pairs forming ordered BHJs are still very limited and, more importantly, the used gel-network guests are structurally amorphous, spurring investigation toward crystalline gel-networks. Here, single crystals of fullerene and non-fullerene acceptors (NFAs) in poly(3-hexylthiophene) (P3HT) organogel are prepared, forming C60:P3HT and (5Z,5″Z)-5,5″-((7,7″-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b″]dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR):P3HT BHJs. The crystalline P3HT network penetrates the crystal matrix without significantly disturbing the single crystallinity, resulting in long-range ordered BHJs. This bi-continuous structure, together with an improved overall ordering, contributes to enhanced charge/energy transfer. As a result, photodetectors based on these ordered BHJs exhibit ameliorated responsivity, detectivity, bandwidth, and stability as compared to the conventional BHJs with short-range ordering. Therefore, this work further extends the scope of long-range ordered BHJs toward crystalline polymer donors and NFAs, providing a generally applicable strategy for the design of organic optoelectronic devices with superior performance.  相似文献   

2.
Non-fullerene organic solar cells (OSCs) have attracted tremendous interest because of their potential to replace traditional expensive fullerene-based OSCs. To further increase the power conversion efficiency (PCE), it is necessary to offset the narrow absorption of the non-fullerene materials, which is often achieved by adding an additive (>10?wt%) to form a ternary blend. However, a high ratio of the third component can often be detrimental to the active layer morphology and can increase the complexity in understanding the device physics toward rationally designed improvements. In this work, we introduce 2,4-bis-[(N,N-diisobutylamino)-2,6-dihydroxyphenyl]-4-(4-diphenyliminio) squaraine (ASSQ) in the poly [(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl) benzo [1,2-b:4,5-b′] dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl) benzo [1,2-c:4,5-c′] dithiophene-4,8-dione)] (PBDB-T): 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno [2,3-d:2′,3′-d′]-s-indaceno [1,2-b:5,6-b′] dithiophene (ITIC) as an active layer “crystallizing-agent”. Through detailed morphology characterization, we find that the addition of 4?wt% ASSQ assists ITIC organization order and promotes PDBD-T:ITIC aggregation in the preferential face-on orientation. In addition, we demonstrate that the ASSQ and PBDB-T show efficient exciton dissociation in the ternary blend over Förster resonance energy transfer (FRET). We reveal using surface potential and solubility measurements that a ASSQ-ITIC co-crystalline structure forms which facilitates a significant improvement in the device PCE, from 8.98% to 10.86%.  相似文献   

3.
A series of dithienosilole-based copolymers, poly [(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,2'-bithiazole)-5,5'-diyl] (P2), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2, 6-diyl-alt-(10 -methyl-phenothiazine)-3,7-diyl](P3), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-9,10-anthracene)-5,5'-diyl] (P4) were synthesized by the Pd-catalyzed Stille polymerization method. Electron-deficient benzothiadiazole and bithiazole units and electron-rich phenothiazine and anthracene moieties were incorporated into the polymer backbone to obtain the broad absorption spectrum and to improve the hole-transporting characteristics, respectively. The polymer solar cell (PSC) was fabricated with a layered structure of ITO/PEDOT:PSS/polymer:C71-PCBM (1:3)/LiF/Al. The best performance of PSC was obtained at P3:C71-PCBM which reaches a power conversion efficiency (PCE) of 1.18%, with a short circuit current density (J(sc)) of 4.75 mA/cm2, an open circuit voltage (V(oc)) of 0.71 V, and a fill factor (FF) of 0.35 under AM 1.5G irradiation (100 mW/cm2).  相似文献   

4.
The development of eco-friendly solvent-processed organic solar cells (OSCs) suitable for industrial-scale production should be now considered the imperative research. Herein, asymmetric 3-fluoropyridine (FPy) unit is used to control the aggregation and fibril network of polymer blends. Notably, terpolymer PM6(FPy = 0.2) incorporating 20% FPy in a well-known donor polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)] (PM6) can reduce the regioregularity of the polymer backbone and endow them with much-enhanced solubility in eco-friendly solvents. Accordingly, the excellent adaptability for fabricating versatile devices based on PM6(FPy = 0.2) by toluene processing is demonstrated. The resulting OSCs exhibit a high power conversion efficiency (PCE) of 16.1% (17.0% by processed with chloroform) and low batch-to-batch variation. Moreover, by controlling the donor-to-acceptor weight ratio at 0.5:1.0 and 0.25:1.0, semi-transparent OSCs (ST-OSCs) yield significant light utilization efficiencies of 3.61% and 3.67%, respectively. For large-area (1.0 cm2) indoor OSC (I-OSC), a high PCE of 20.6% is achieved with an appropriate energy loss of 0.61 eV under a warm white light-emitting diode (3,000 K) with the illumination of 958 lux. Finally, the long-term stability of the devices is evaluated by investigating their structure–performance–stability relationship. This work provides an effective approach to realizing eco-friendly, efficient, and stable OSCs/ST-OSCs/I-OSCs.  相似文献   

5.
Ternary architecture has been widely demonstrated as a facile and efficient strategy to boost the performance of organic solar cells (OSCs). However, the rational design of the third component with suitable core and end-group modification is still a challenge. Herein, two new small-molecule (SM) donors BT-CN and BT-ER, featuring the identical conjugated backbone with distinct end group, have been designed, synthesized, and introduced into the PM6:Y6 binary system as the second donor. Both molecules exhibit complementary absorption and good miscibility with PM6, contributing to the nanofibrous phases and strong face-on molecular packing. Importantly, the incorporation of BT-CN/BT-ER has significantly facilitated charge collection and transportation with remarkable suppression of carrier recombination. As a result, ternary OSCs with 20 wt% BT-CN/BT-ER achieved a PCE of 16.8%/17.22% with synchronously increased open-circuit voltage (VOC), short-circuit current density (JSC) and fill factor (FF). Moreover, replacing Y6 with L8-BO further improves the PCE to 18.05%/18.11%, indicating the universality of both molecules as the third component. This work demonstrates not only two efficient SM donors with 4,8-bis(4-chloro-5-(tripropylsilyl)thiophen-2-yl) benzo[1,2-b:4,5-b′]dithiophene (BDTT-SiCl) as the core but also end group modification strategy to fine-tune the absorption spectrum, molecular packing, and energy levels of SM donors to construct high-performance ternary OSCs.  相似文献   

6.
High‐performance ternary organic solar cells are fabricated by using a wide‐bandgap polymer donor (bithienyl‐benzodithiophene‐alt‐fluorobenzotriazole copolymer, J52) and two well‐miscible nonfullerene acceptors, methyl‐modified nonfullerene acceptor (IT‐M) and 2,2′‐((2Z ,2′Z )‐((5,5′‐(4,4,9,9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydros‐indaceno[1,2‐b :5,6‐b ′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(3‐oxo‐2,3‐dihydro‐1H ‐indene‐2,1‐diylidene))dimalononitrile (IEICO). The two acceptors with complementary absorption spectra and similar lowest unoccupied molecular orbital levels show excellent compatibility in the blend due to their very similar chemical structures. Consequently, the obtained ternary organic solar cells (OSC) exhibits a high efficiency of 11.1%, with an enhanced short‐circuit current density of 19.7 mA cm?2 and a fill factor of 0.668. In this ternary system, broadened absorption, similar output voltages, and compatible morphology are achieved simultaneously, demonstrating a promising strategy to further improve the performance of ternary OSCs.  相似文献   

7.
We have studied the performance of normal and inverted bulk-heterojunction solar cells with an active layer composed of a blend of poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PDTS-BTD) and {6,6}-phenyl-C71 butyric acid methyl ester (PC(71)BM). For inverted cells, a thin layer of ZnO nanoparticles and MoO(3) were used as interlayers for the bottom cathode and the top anode respectively. To enhance the device performance, a thin film of 4,4',4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA) was used along with MoO(3) as an anode interlayer to improve the hole extraction from the photoactive layer to the anode. The inverted polymer solar cells with double interlayer exhibit a higher power conversion efficiency of 6.45% compared to the conventional cell of 4.91% due to efficient charge extraction and favorable vertical morphology of active layer blend. Our ultraviolet photoemission spectroscopy results indicate that the formation of band bending due to interlayer leads to the enhancement in hole extraction.  相似文献   

8.
New deep blue emitting materials 2,8-bis(3,5-diphenylphenyl)-6,6,12,12-tetraethyl-6,12-dihydrodiindeno[1,2-b:1',2'-e]pyrazine (DPP-EPY) and 2,8-bis(3',5'-diphenylbiphenyl-4-yl)-6,6,12,12-tetraethyl-6,12-dihydrodiindeno[1,2-b:1',2'-e]pyrazine (DPBP-EPY) were synthesized through introduction of m-terphenyl or triphenylbenzene bulky side groups in a new indenopyrazine core. These materials all showed high thermal stability and highly reduced intermolecular interaction. DPP-EPY and DPBP-EPY showed PL maxima of 456 nm and 460 nm in deep blue region and narrow PL spectra with full-width at half-maximum (FWHM) of 46 nm and 52 nm, respectively. As a result of making non-doped OLED devices using these synthesized materials as emitting layers, DPP-EPY showed EL spectrum of 452 nm, very narrow FWHM of 46 nm, luminance efficiency of 1.04 cd/A with current density of 10 mA/cm2 and CIE coordinate of (0.161, 0.104), creating a deep blue OLED close to the National Television System Committee (NTSC) blue standard.  相似文献   

9.
Ternary heterojunction strategies appear to be an efficient approach to improve the efficiency of organic solar cells (OSCs) through harvesting more sunlight. Ternary OSCs are fabricated by employing wide bandgap polymer donor (PM6), narrow bandgap nonfullerene acceptor (Y6), and PC71BM as the third component to tune the light absorption and morphologies of the blend films. A record power conversion efficiency (PCE) of 16.67% (certified as 16.0%) on rigid substrate is achieved in an optimized PM6:Y6:PC71BM blend ratio of 1:1:0.2. The introduction of PC71BM endows the blend with enhanced absorption in the range of 300–500 nm and optimises interpenetrating morphologies to promote photogenerated charge dissociation and extraction. More importantly, a PCE of 14.06% for flexible ITO‐free ternary OSCs is obtained based on this ternary heterojunction system, which is the highest PCE reported for flexible state‐of‐the‐art OSCs. A very promising ternary heterojunction strategy to develop highly efficient rigid and flexible OSCs is presented.  相似文献   

10.
The thermodynamic ionization constants (pK(a)(1), pK(a)(2), and pK(a)(3)) of ginkgolide B (9H-1,7a-(epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo-[3',2':3,4]cyclopenta[1,2-d]furan-5,9,12-(4H)-trione, 3-tert-butylhexahydro-4,7b,11-trihydroxy-8-methyl-) in aqueous solution have been settled by pH-metric and NMR studies. The three macroscopic pK(a) values as well as the water solubility and the water/n-octanol partition coefficient have been extracted from pH-metric data by means of a nonlinear regression methodology. NMR spectroscopy provided confirmation of the values of the macroscopic constants, information about the effective ionization pathways, and an estimation of the proportions of the various forms under physiologically relevant conditions.  相似文献   

11.
Exciton lifetime (τ) is crucial for the migration of excitons to donor/acceptor interfaces for subsequent charge separation in organic solar cells (OSCs); however, obvious prolongation of τ has rarely been achieved. Here, by introducing a solid additive 9-fluorenone-1-carboxylic acid (FCA) into the active layer, which comprises a nonfullerene acceptor, 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (IT-M), τ is substantially prolonged from 491 to 928 ps, together with obvious increases in fluorescence intensity and quantum yield. Time-resolved transient infrared spectra indicate the presence of an intermolecular vibrational coupling between the electronic excited state of IT-M and the electronic ground state of FCA, which is first observed here and which can suppress the internal conversion process. IT-M-based OSCs display an improved short-circuit current and fill factor after the addition of FCA. Thus, the power conversion efficiency is increased, particularly for devices with a large donor/acceptor ratio of 1:4, whose efficiency is increased by 56%. This study describes a novel method, which is also applicable to other nonfullerene acceptors, for further improving the performance of OSCs without affecting their morphology and light absorption properties.  相似文献   

12.
The reaction of the iridium dimer [Ir(ppy)2(micro-Cl)]2 (ppy = 2-pyridiylphenyl) with bis(2,2'-bipyridin-5-yl) ethyne (bpy-C2-bpy), bis(2,2'-bipyridine)-butadiyne (bpy-C4-bpy), and bis(2,2'-bipyridin-5-yl-(Z)-hexa-3-ene-1,5-diyl) (bpy-C6H2-bpy) affords the following diiridium complexes: [ClO4]2 [(ppy)2Ir(bpy-C2-bpy)Ir(ppy)2] (1), [ClO4]2 [(ppy)2Ir(bpy-C4-bpy)Ir(ppy)2 (2), and [ClO4]2 [(ppy)2Ir(bpy-C6H6-bpy)Ir (ppy)2 (3), respectively. Herein, we describe the synthesis, characterization, and physical and electrochemical properties of the diiridium complexes in which the two iridium units are connected by a pi-conjugated nanowire bridge.  相似文献   

13.
Typical small red light-emitting molecules for organic light emitting diodes (OLEDs) were highly susceptible to fluorescence concentration quenching in solid state. Red fluorophores, (2Z, 2'Z)-3, 3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-29',5'-diyl]bis(2-phenylacrylonitrile) (ABCV-P), (2E, 2'E)-3,3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis[2-(2-thienyl)acrylonitrile] (ABCV-Th) and (2Z, 2'Z)-3,3'-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis[2-(2-naphthyl)acrylonitrile] (ABCV-Np), capable of preventing fluorescence concentration quenching were designed and synthesized. These compounds have intramolecular charge transfer (ICT) properties which were estimated by measurement of UV-Visible absorption and photoluminescence (PL) emission spectra with variation of solvent polarity (n-Hexane/Chloroform = 99/1, 1/1; Chloroform; Methylene chloride). The magnitude of ICT for ABCV-Th was measured to be the largest and that for ABCV-Np was slightly larger compared to that for ABCV-P. The magnitude of ICT resulted in a shift of peak wavelength of PL emission. Therefore, this result well supported substituent effect on the color change of PL emission. The peak wavelengths of photoluminescence for ABCV-P, ABCV-Np and ABCV-Th were observed to be 607.5, 611.5 and 617.5 nm, respectively, and those of EL spectra were measured to be 612.5, 619.5, 621.0 nm, respectively. The emission maxima of PL and EL spectra for these red fluorescent compounds were well correlated with substituent effect on ICT for them.  相似文献   

14.
We report the photophysical and electroluminescence (EL) properties of two fluorene-based copolymers, poly{[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl]-alt-[6,6′- bis(3-phenylquinoxaline)-2,2′-diyl]} (Qx-PF) and poly{[9,9-bis(2- ethylhexyl)fluorene-2,7-diyl]-alt-[N,N′-diphenyl-N,N′-bis(4-phenyl)-1,1′-biphenyl-4,4′-diamine]} (TPD-PF). The two copolymers in thin films show blue emission approximately 429-452 nm with relatively narrow bandwidth upon photoexcitation. Electroluminescence has been demonstrated using TPD-PF as the active polymer in the light-emitting electrochemical cell (LEC) with a turn-on voltage at 2.8 V and an EL efficiency of 0.002 cd/A. Due to the improved electron-transporting property, the Qx-PF-based LEC achieves the EL efficiency of 0.07 cd/A, 35 times higher than that of the TPD-PF-based device. Compared to the photoluminescence spectra, EL spectra show enhanced excimer emission, which is primarily related to self-heating of the devices during operation. The main process involved in the decrease of the light intensity during device operation is the electrochemical degradation of the polymer blend.  相似文献   

15.
Newly synthesized organic electronics materials are often available in submicrogram amounts only. Photoelectrochemical scanning droplet cell microscopy is a powerful method that allows a comprehensive characterisation of such small amounts including oxidation, reduction potentials, doping, determination of charge carriers, band gap, charge capacity, over-oxidation sensitivity and many more. Localized photoelectrochemical characterization of the poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno [3,4-b] thiophene-2,6-diyl] (PBDTTT-c) and PBDTTT-c:PCBM bulk heterojunction was performed using photoelectrochemical scanning droplet cell microscopy (PE-SDCM). The optical properties and the real and imaginary part of the dielectric function, of the polymer were determined using spectroscopic ellipsometry. The photoelectrochemical characterizations were performed in a three and two electrode configuration of PE-SDCM under laser and white light illumination. The effect of illumination was characterized using dark/illumination sequences. The stability of the photocurrent was studied using longer term (600 s) illumination. Finally the effect of cell configuration and illumination conditions on the photovoltage was studied.  相似文献   

16.
A new strategy of platinum(II) complexation is developed to regulate the crystallinity and molecular packing of polynitrogen heterocyclic polymers, optimize the morphology of the active blends, and improve the efficiency of the resulting nonfullerene polymer solar cells (NF‐PSCs). The newly designed s‐tetrazine (s‐TZ)‐containing copolymer of PSFTZ (4,8‐bis(5‐((2‐butyloctyl)thio)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐3,6‐bis(4‐octylthiophen‐2‐yl)‐1,2,4,5‐tetrazine) has a strong aggregation property, which results in serious phase separation and large domains when blending with Y6 ((2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile)), and produces a power‐conversion efficiency (PCE) of 13.03%. By adding small amount of Pt(Ph)2(DMSO)2 (Ph, phenyl and DMSO, dimethyl sulfoxide), platinum(II) complexation would occur between Pt(Ph)2(DMSO)2 and PSFTZ. The bulky benzene ring on the platinum(II) complex increases the steric hindrance along the polymer main chain, inhibits the polymer aggregation strength, regulates the phase separation, optimizes the morphology, and thus improves the efficiency to 16.35% in the resulting devices. 16.35% is the highest efficiency for single‐junction PSCs reported so far.  相似文献   

17.
Two novel diketopyrrolopyrrole-based conjugated copolymers, namely, poly{[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl]-alt-[3,6-bis(bithiophen-5-yl)-2,5-di-(2-ethylhexyl)-pyrrolo[3,4-c]pyrrole-1,4-dione]} (P1) and poly{[N-(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]pyrrole-2,6-diyl]-alt-[3,6-bis(bithiophen-5-yl)-2,5-di-(2-ethylhexyl)-pyrrolo[3,4-c]pyrrole-1,4-dione]} (P2), have been designed and synthesized by Stille coupling reaction. The resulting copolymers exhibited very broad and strong absorptions in the visible and near-infrared region. Through cyclic voltammetry measurements, it was found that P1 possesses a lower highest occupied molecular orbital energy level (?5.14 eV) compared to that of P2 (?4.98 eV). The bulk heterojunction photovoltaic devices were fabricated by using the two copolymers as the donor and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor in the active layer. The maximum power conversion efficiency of 1.48 % was obtained based on the blend of P1:PCBM = 1:3(w/w) with open circuit voltage (V OC ) of 0.66 V and short circuit current (J SC ) of 6.36 mA/cm2, under the illumination of AM 1.5, 100 mW/cm2.  相似文献   

18.
A ternary structure has been demonstrated as being an effective strategy to realize high power conversion efficiency (PCE) in organic solar cells (OSCs); however, general materials selection rules still remain incompletely understood. In this work, two nonfullerene small‐molecule acceptors 3TP3T‐4F and 3TP3T‐IC are synthesized and incorporated as a third component in PM6:Y6 binary blends. The photovoltaic behaviors in the resultant ternary OSCs differ significantly, despite the comparable energy levels. It is found that incorporation of 15% 3TP3T‐4F into the PM6:Y6 blend results in facilitating exciton dissociation, increasing charge transport, and reducing trap‐assisted recombination. All these features are responsible for the enlarged PCE of 16.7% (certified as 16.2%) in the PM6:Y6:3TP3T‐4F ternary OSCs, higher than that (15.6%) in the 3TP3T‐IC containing ternary devices. The performance differences are mainly ascribed to the compatibility between the third component and the host materials. The 3TP3T‐4F guest acceptor exhibits an excellent compatibility with Y6, tending to form well‐mixed phases in the ternary blend without disrupting the favored bicontinuous transport networks, whereas 3TP3T‐IC displays a morphological incompatibility with Y6. This work highlights the importance of considering the compatibility for materials selection toward high‐efficiency ternary organic OSCs.  相似文献   

19.
The tandem structure is an efficient way to simultaneously tackle absorption and thermalization losses of the single junction solar cells. In this work, a high‐performance tandem organic solar cell (OSC) using two subcells with the same donor poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and two acceptors, F‐M and 2,9‐bis(2‐methylene‐(3(1,1‐dicyanomethylene)benz[f ]indanone))7,12‐dihydro‐(4,4,10,10‐tetrakis(4‐hexylphenyl)‐5,11‐diocthylthieno[3′,2′:4,5]cyclopenta[1,2‐b]thieno[2″,3″:3′,4′]cyclopenta[1′,2′:4,5]thieno[2,3‐f][1]benzothiophene (NNBDT), with complementary absorptions is demonstrated. The two subcells show high Voc with value of 0.99 V for the front cell and 0.86 V for the rear cell, which is the prerequisite for obtaining high Voc of their series‐connected tandem device. Although there is much absorption overlap for the subcells, a decent Jsc of the tandem cell is still obtained owing to the complementary absorption of the two acceptors in a wide range. With systematic device optimizations, a best power conversion efficiency of 14.52% is achieved for the tandem device, with a high Voc of 1.82 V, a notable FF of 74.7%, and a decent Jsc of 10.68 mA cm?2. This work demonstrates a promising strategy of fabricating high‐efficiency tandem OSCs through elaborate selection of the active layer materials in each subcell and tradeoff of the Voc and Jsc of the tandem cells.  相似文献   

20.
Two soluble acceptor–donor–acceptor (A–D–A) type organic small molecules, 2,2′-(5,5′-(1E,1′E)-2,2′-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(ethene-2,1-diyl)bis(3,4-dihexylthiophene-5,2-diyl))bis(methan-1-yl-1-ylidene)dimalononitrile (BvT-DCN) and 2,2′-(3,3′-(1E,1′E)-2,2′-(5,5′-(1E,1′E)-2,2′-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(ethene-2,1-diyl)bis(3,4-dihexylthiophene-5,2-diyl))bis(ethene-2,1-diyl)bis(5,5-dimethylcyclohex-2-ene-3-yl-1-ylidene))dimalononitrile (BT-C6), were synthesized by Knoevenagel condensation reaction based on benzothiadiazole, thiophene, and different terminal electron-withdrawing groups. The acceptor group benzothiadiazole and donor group thiophene inside the molecules are connected by all-trans double bonds, which ensures the benzothiadiazole and thiopene groups are in the same plane and makes the molecules have a relative narrow band gap and absorb sunlight in the long wavelength. The terminal electron-withdrawing groups, malononitrile and 2-(5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile (DCM), are symmetrically introduced into the molecules, respectively, to tune the energy level and extend the absorption of the molecules. The UV–Vis absorption spectrum and cyclic voltammetry measurements indicated that BT-C6 has a lower energy band gap (1.60 eV) than BvT-DCN (1.71 eV), which arises from the stronger electron-withdrawing ability of DCM group in BT-C6 than that of malononitrile group in BvT-DCN. And BvT-DCN and BT-C6 have nearly the same highest occupied molecular orbital energy level, ?5.74 eV for BvT-DCN and ?5.72 eV for BT-C6 due to the same electron–donor group of the two compounds. Bulk heterojunction photovoltaic devices were fabricated using BvT-DCN or BT-C6 as donor and (6,6)-phenyl C61-butyric acid methyl ester as acceptor. The device based on BT-C6 has a higher (~8 times) short circuit current and power conversion efficiency than the device based on BvT-DCN, resulting from the wider solar light absorption of BT-C6 and smaller phase separation dimension of the active layer based on BT-C6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号