首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Designing efficient electrocatalysts for the hydrogen evolution reaction (HER) has attracted substantial attention owing to the urgent demand for clean energy to face the energy crisis and subsequent environmental issues in the near future.Among the large variety of HER catalysts,molybdenum disulfide (MoS2) has been regarded as the most famous catalyst owing to its abundance,low price,high efficiency,and definite catalytic mechanism.In this study,defect-engineered MoS2 nanowall (NW) catalysts with controllable thickness were fabricated and exhibited a significantly enhanced HER performance.Benefiting from the highly exposed active edge sites and the rough surface accompanied by the robust NW structure,the defect-rich MoS2 NW catalyst with an optimized thickness showed an ultralow onset overpotential of 85 mV,a high current density of 310.6 mA·cm-2 at η =300 mV,and a low potential of 95 mV to drive a 10 mA.cm-2 cathodic current.Additionally,excellent electrochemical stability was realized,making this freestanding NW catalyst a promising candidate for practical water splitting and hydrogen production.  相似文献   

2.
High-performance electrocatalysts for water splitting are desired due to the urgent requirement of clean and sustainable hydrogen production.To reduce the energy barrier,herein,we adopt a facile in-situ surface modification strategy to develop a low-cost and efficient electrocatalyst for water splitting.The synthesized mulberry-like NiS/Ni nanoparticles exhibit excellent catalytic performance for water splitting.Small overpotentials of 301 and 161 mV are needed to drive the current density of 10 mA cm~(-2) accompanying with remarkably low Tafel slopes of 46 and 74 mV dec~(-1) for oxygen evolution reaction(OER) and hydrogen evolution reaction(HER),respectively.Meanwhile,a robust electrochemical stability is demonstrated.Further high-resolution X-ray photoelectron spectroscopy analyses reveal that the intrinsic HER activity improvement is attributed to the electron-enriched S on the strongly coupled NiS and Ni interface,which simultaneously facilitates the important electron transfer,consistent with the electrochemical impedance results.The post characterizations demonstrate that surface reconstructed oxyhydroxide contributes to the OER activity and NiS/Ni is an OER precatalyst.This structure construction with in-situ formation of active interface provides an effective way to design efficient electrocatalysts for energy conversion.  相似文献   

3.
Producing highly efficient bifunctional catalyst for the generation of hydrogen and oxygen through overall water splitting is an emerging direction in electrocatalysis,Herein,a dandelion-like hierarchi-cal NiMoP2-Ni2P(nanowire/nanoparticle)heterostructure was synthesized for efficient electrochemical water splitting.The NiMoP2-Ni2P heterostructures grown on carbon cloth as a freestanding integrated electrode exhibited excellent oxygen evolution reaction(OER)activity and hydrogen evolution reaction(HER)activities with low overpotentials(258 mV and 53 mV to reach 10 mA cm-2 for the OER and HER,respectively),and small Tafel slope(45 mV dec-1 and 58 mV dec-1 for the OER and HER,respectively).Moreover,the NiMoP2-Ni2 P heterostructure can act as both anode and cathode catalysts for overall water splitting with low overall potential of 1.48 V at 10 mA cm-2.Density functional theory(DFT)combined with structural probes suggests that the amorphous heterogeneous interfaces play an essential role in enhanced catalytic performance.  相似文献   

4.
To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.  相似文献   

5.
Tao Chen  Yiwei Tan 《Nano Research》2018,11(3):1331-1344
Hierarchical nano-architectures comprised of ultrathin ternary selenide (CoNiSe2) nanorods were directly grown on nickel foam (NF). The integrated CoNiSe2/NF functions as a robust electrocatalyst with an extremely high activity and stability for emerging renewable energy technologies, and electrochemical oxygen and hydrogen evolution reactions (OER and HER, respectively). The overpotentials required to deliver a current density of 100 mA·cm?2 are as low as 307 and 170 mV for the OER and HER, respectively; therefore, the obtained CoNiSe2 is among the most promising earth-abundant catalysts for water splitting. Furthermore, our synthetic sample validates a two-electrode electrolyzer for reducing the cell voltage in the full water splitting reaction to 1.591 V to achieve a current density of 10 mA·cm?2, which offers a novel, inexpensive, integrated selenide/NF electrode for electrocatalytic applications.
  相似文献   

6.
We designed and prepared a hetero-dimensional hybrid (HDH) based on molybdenum selenide (MoSe2) nanodots (NDs) anchored in few-layer MoSe2 nanosheets (NSs) (MoSe2 HDH) via a one-pot hydrothermal process.The MoSe2 HDH exhibits excellent electrocatalytic activity toward hydrogen evolution reaction (HER).This is because,on the one hand,the edge-abundant features of MoSe2 NDs and the unique defect-rich structure at the interface of MoSe2 NSs/NDs could bring in more active sites for HER;on the other hand,the random stacking of the flake-like MoSe2 NSs on the surface of the supporting electrode may achieve efficient charge transport.Additionally,the MoSe2 HDH shows good water stability,desirable biocompatibility,and high near infrared (NIR) photothermal conversion efficiency.Therefore,the MoSe2 HDH is investigated as a nanomedicine in NIR photothermal therapy (PTT) for cancer.Specifically,the MoSe2 HDH can be applied as a dual-modal probe for computed tomography (CT) and photoacoustic tomography (PA) imaging owing to its strong X-ray attenuation ability and NIR absorption.Therefore,the MoSe2 HDH,combining PTr with CT/PA imaging into one system,holds great potential for imaging-guided cancer theranostics.This work may provide an ingenious strategy to prepare other hetero-dimensional layered transition metal dichalcogenides.  相似文献   

7.
The establishment of electrocatalysts with bifunctionality for efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic environments is necessary for the development of proton exchange membrane (PEM) water electrolyzers for the production of clean hydrogen fuel. RuIr alloy is considered to be a promising electrocatalyst because of its favorable OER performance and potential for HER. Here, the design of a bifunctional electrocatalyst with greatly boosted water‐splitting performance from doping RuIr alloy nanocrystals with transition metals that modify electronic structure and binding strength of reaction intermediates is reported. Significantly, Co‐RuIr results in small overpotentials of 235 mV for OER and 14 mV for HER (@ 10 mA cm?2 current density) in 0.1 m HClO4 media. Therefore a cell voltage of just 1.52 V is needed for overall water splitting to produce hydrogen and oxygen. More importantly, for a series of M‐RuIr (M = Co, Ni, Fe), the catalytic activity dependence at fundamental level on the chemical/valence states is used to establish a novel composition‐activity relationship. This permits new design principles for bifunctional electrocatalysts.  相似文献   

8.
2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co–Ru–MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T′ phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm?2 and Tafel slopes of 55 and 50 mV decade?1 in 1.0 m KOH, respectively. Analysis of X‐ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T′ phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co‐doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.  相似文献   

9.
Liu Z  Hou W  Pavaskar P  Aykol M  Cronin SB 《Nano letters》2011,11(3):1111-1116
We demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Under visible illumination, we observe enhancements of up to 66× in the photocatalytic splitting of water in TiO2 with the addition of Au nanoparticles. Above the plasmon resonance, under ultraviolet radiation we observe a 4-fold reduction in the photocatalytic activity. Electromagnetic simulations indicate that the improvement of photocatalytic activity in the visible range is caused by the local electric field enhancement near the TiO2 surface, rather than by the direct transfer of charge between the two materials. Here, the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photogenerated charge contributing to catalysis. This mechanism of enhancement is particularly effective because of the relatively short exciton diffusion length (or minority carrier diffusion length), which otherwise limits the photocatalytic performance. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized.  相似文献   

10.
《Nano Research》2016,(8):2234-2243
The development of efficient,low-cost,stable,non-noble-metal electrocatalysts for water splitting,particularly those that can catalyze both the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode,is a challenge.We have developed a facile method for synthesizing CoSe2 nanoparticles uniformly anchored on carbon fiber paper (CoSe2/CF) via pyrolysis and selenization of in situ grown zeolitic imidazolate framework-67 (ZIF-67).CoSe2/CF shows high and stable catalytic activity in both the HER and OER in alkaline solution.At a low cell potential,i.e.,1.63 V,a water electrolyzer equipped with two CoSe2/CF electrodes gave a water-splitting current of 10 mA.cm-2.At a current of 20 mA.cm-2,it can operate without degradation for 30 h.This study not only offers a cost-effective solution for water splitting but also provides a new strategy for developing various catalytic nanostructures by changing the metal-organic framework precursors.  相似文献   

11.
The rational design of earth-abundant catalysts with excellent water splitting activities is important to obtain clean fuels for sustainable energy devices. In this study, mixed transition metal oxide nanoparticles encapsulated in nitrogendoped carbon (denoted as AB2O4@NC) were developed using a one-pot protocol, wherein a metal–organic complex was adopted as the precursor. As a proof of concept, MnCo2O4@NC was used as an electrocatalyst for water oxidation, and demonstrated an outstanding electrocatalytic activity with low overpotential to achieve a current density of 10 mA·cm?1 (η 10 = 287 mV), small Tafel slope (55 mV·dec?1), and high stability (96% retention after 20 h). The excellent electrochemical performance benefited from the synergistic effects of the MnCo2O4 nanoparticles and nitrogen-doped carbon, as well as the assembled mesoporous nanowire structure. Finally, a highly stable all-solid-state supercapacitor based on MnCo2O4@NC was demonstrated (1.5% decay after 10,000 cycles).
  相似文献   

12.
Electrochemical water splitting to produce hydrogen renders a promising pathway for renewable energy storage. Considering limited electrocatalysts have good oxygen‐evolution reaction (OER) catalytic activity in acid solution while numerous economical materials show excellent OER catalytic performance in alkaline solution, developing new strategies that enhance the alkaline hydrogen‐evolution reaction (HER) catalytic activity of cost‐effective catalysts is highly desirable for achieving highly efficient overall water splitting. Herein, it is demonstrated that synergistic regulation of water dissociation and optimization of hydrogen adsorption free energy on electrocatalysts can significantly promote alkaline HER catalysis. Using oxygen‐incorporated Co2P as an example, the synergistic effect brings about 15‐fold enhancement of alkaline HER activity. Theory calculations confirm that the water dissociation free energy of Co2P decreases significantly after oxygen incorporation, and the hydrogen adsorption free energy can also be optimized simultaneously. The finding suggests the powerful effectiveness of synergetic regulation of water dissociation and optimization of hydrogen adsorption free energy on electrocatalysts for alkaline HER catalysis.  相似文献   

13.
MoSe2 is a promising earth‐abundant electrocatalyst for the hydrogen‐evolution reaction (HER), even though it has received much less attention among the layered dichalcogenide (MX2) materials than MoS2 so far. Here, a novel hydrothermal‐synthesis strategy is presented to achieve simultaneous and synergistic modulation of crystal phase and disorder in partially crystallized 1T‐MoSe2 nanosheets to dramatically enhance their HER catalytic activity. Careful structural characterization and defect characterization using positron annihilation lifetime spectroscopy correlated with electrochemical measurements show that the formation of the 1T phase under a large excess of the NaBH4 reductant during synthesis can effectively improve the intrinsic activity and conductivity, and the disordered structure from a lower reaction temperature can provide abundant unsaturated defects as active sites. Such synergistic effects lead to superior HER catalytic activity with an overpotential of 152 mV versus reversible hydrogen electrode (RHE) for the electrocatalytic current density of j = ?10 mA cm?2, and a Tafel slope of 52 mV dec?1. This work paves a new pathway for improving the catalytic activity of MoSe2 and generally MX2‐based electrocatalysts via a synergistic modulation strategy.  相似文献   

14.
Hydrogen evolution reaction (HER) through water splitting is a promising way to solve the energy short-age.Noble-metal-free HER electrocatalysts with high efficiency is very important for practical applica-tions.Herein,we prepare the Ni3S4@MoS2 electrocatalyst on carbon cloth (CC) through a two-step hy-drothermal process.The Ni3S4 nanorods are uniformly integrated with the MoS2 nanosheets,forming a hierarchical structure and heterogeneous interfaces.The fast electron transfer on the interface en-hances the kinetics of catalytic reaction.The hierarchical structure provides more exposed active sites.The Ni3S4@MoS2/CC exhibits good catalytic activity and long-term stability for HER.This work provided a practicable strategy to develop efficient electrocatalysts for HER in alkaline media.  相似文献   

15.
Electrocatalytic hydrogen evolution reaction (HER) based on water splitting holds great promise for clean energy technologies, in which the key issue is exploring cost‐effective materials to replace noble metal catalysts. Here, a sequential chemical etching and pyrolysis strategy are developed to prepare molybdenum carbide‐decorated metallic cobalt@nitrogen‐doped porous carbon polyhedrons (denoted as Mo/Co@N–C) hybrids for enhanced electrocatalytic hydrogen evolution. The obtained metallic Co nanoparticles are coated by N‐doped carbon thin layers while the formed molybdenum carbide nanoparticles are well‐dispersed in the whole Co@N–C frames. Benefiting from the additionally implanted molybdenum carbide active sites, the HER performance of Mo/Co@N–C hybrids is significantly promoted compared with the single Co@N–C that is derived from the pristine ZIF‐67 both in alkaline and acidic media. As a result, the as‐synthesized Mo/Co@N–C hybrids exhibit superior HER electrocatalytic activity, and only very low overpotentials of 157 and 187 mV are needed at 10 mA cm?2 in 1 m KOH and 0.5 m H2SO4, respectively, opening a door for rational design and fabrication of novel low‐cost electrocatalysts with hierarchical structures toward electrochemical energy storage and conversion.  相似文献   

16.
He C  Wu X  Shen J  Chu PK 《Nano letters》2012,12(3):1545-1548
Good understanding of the reaction mechanism in the electrochemical reduction of water to hydrogen is crucial to renewable energy technologies. Although previous studies have revealed that the surface properties of materials affect the catalytic reactivity, the effects of a catalytic surface on the hydrogen evolution reaction (HER) on the molecular level are still not well understood. Contrary to general belief, water molecules do not adsorb onto the surfaces of 3C-SiC nanocrystals (NCs), but rather spontaneously dissociate via a surface autocatalytic process forming a complex consisting of -H and -OH fragments. In this study, we show that ultrathin 3C-SiC NCs possess superior electrocatalytic activity in the HER. This arises from the large reduction in the activation barrier on the NC surface enabling efficient dissociation of H(2)O molecules. Furthermore, the ultrathin 3C-SiC NCs show enhanced HER activity in photoelectrochemical cells and are very promising to the water splitting based on the synergistic electrocatalytic and photoelectrochemical actions. This study provides a molecular-level understanding of the HER mechanism and reveals that NCs with surface autocatalytic effects can be used to split water with high efficiency thereby enabling renewable and economical production of hydrogen.  相似文献   

17.
采用KOH溶液在通电条件下对Fe3N纳米颗粒表面改性的方法, 探究了碱化处理对Fe3N纳米颗粒电催化性能的影响。采用XRD、TEM、EDX、XPS、拉曼光谱和傅立叶变换红外光谱对碱化前后的Fe3N样品进行形貌和成分的表征, 采用时间电流曲线、LSV曲线、Tafel斜率、交流阻抗法和CV曲线对碱化前后的Fe3N样品进行电催化制氢(HER)性能的分析。结果表明, 用KOH处理的Fe3N样品, 平均晶粒尺寸由(80±10) nm缩小为(70±10) nm, 形状由破碎的链状结构变为椭圆形结构, 物相由ε-Fe3N相部分转变为α-Fe2O3相; 尺寸、形貌和成分的改变, 使得碱化后的样品有更多的电催化活性位点暴露。由电流密度为10 mA/cm2的过电位0.429 V降为0.204 V, Tafel斜率由103 mV/dec降为95 mV/dec。过电势降低, 交流阻抗变小, 电化学活性面积增大, 表明KOH碱化处理后的样品电催化制氢的能力得到大大提高。  相似文献   

18.
Developing nonprecious electrocatalysts with superior activity and durability for electrochemical water splitting is of great interest but challenging due to the large overpotential required above the thermodynamic standard potential of water splitting (1.23 V). Here, in situ growth of Fe2+‐doped layered double (Ni, Fe) hydroxide (NiFe(II,III)‐LDH) on nickel foam with well‐defined hexagonal morphology and high crystallinity by a redox reaction between Fe3+ and nickel foam under hydrothermal conditions is reported. Benefiting from tuning the local atomic structure by self‐doping Fe2+, the NiFe(II,III)‐LDH catalyst with higher amounts of Fe2+ exhibits high activity toward oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER) activity. Moreover, the optimized NiFe(II,III)‐LDH catalyst for OER (O‐NiFe(II,III)‐LDH) and catalyst for HER (H‐NiFe(II,III)‐LDH) show overpotentials of 140 and 113 mV, respectively, at a current density of 10 mA cm?2 in 1 m KOH aqueous electrolyte. Using the catalysts for overall water splitting in two‐electrode configuration, a low overpotential of just 1.54 V is required at a benchmark current density of 10 mA cm?2. Furthermore, it is demonstrated that electrolysis of the water device can be drived by a self‐powered system through integrating a triboelectric nanogenerator and battery, showing a promising way to realize self‐powered electrochemical systems.  相似文献   

19.
A TiO2 heterostructure modified with carbon nitride nanosheets (CN-NSs) has been synthesized via a direct interfacial assembly strategy.The CN-NSs,which have a unique two-dimensional structure,were favorable for supporting TiO2 nanoparticles (NPs).The uniform dispersion of TiO2 NPs on the surface of the CN-NSs creates sufficient interfacial contact at their nanojunctions,as was confirmed by electron microscopy analyses.In comparison with other reported metal oxide/CN composites,the strong interactions of the ultrathin CN-NSs layers with the TiO2 nanoparticles restrain their re-stacking,which results in a large specific surface area of 234.0 m2·g-1.The results indicate that the optimized TiO2/CN-NSs hybrid exhibits remarkably enhanced photocatalytic efficiency for dye degradation (with k of 0.167 min-1 under full spectrum) and H2 production (with apparent quantum yield =38.4% for,λ =400 ± 15 nm monochromatic light).This can be ascribed to the improved surface area and quantum efficiency of the hybrid,with a controlled ratio that reaches the appropriate balance between producing sufficient nanojunctions and absorbing enough photons.Furthermore,based on the identification of the main active species for photodegradation,and the confirmation of active sites for H2 evolution,the charge transfer pathway across the TiO2/CN-NSs interface under simulated solar light is proposed.  相似文献   

20.
二维层状二硫化钼(MoS_(2))是一种非常有前景的替代贵金属铂的电水解制氢催化剂。然而,MoS_(2)电子导电性较差,且在碱性氢析出反应(HER)中对水分子吸附/裂解的活化能垒较高,限制其在碱性电水解的应用。通过一步水热法将MoS_(2)纳米片均匀生长在三维导电碳布(CC)上,以有效提高电极导电性。随后在RuCl_(3)的乙醇溶液中通过溶剂热法可控制备超小Ru纳米颗粒负载MoS_(2)纳米片,形成CC@MoS_(2)/Ru异质结构。Ru的负载能有效促进水吸附/裂解反应,从而和MoS_(2)协同催化HER。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法对MoS_(2)/Ru进行结构和形貌表征。结果表明:MoS_(2)呈纳米片状交错生长在碳布上,并且超小Ru纳米颗粒(平均粒径2.5 nm)均匀负载在MoS_(2)纳米片上。将CC@MoS_(2)/Ru作为工作电极,石墨棒和Hg/HgO电极分别为对电极和参比电极进行碱性HER测试。在电流密度为-10 mA·cm^(-2)下的过电位仅为71.3 mV,Tafel斜率为104.8 mV·dec^(-1)。通过对其进行计时电位滴定法稳定性测试,发现在恒电流密度-10 mA·cm^(-2)下能够维持至少35 h而没有明显性能衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号